scholarly journals Search Directions in Infeasible Newton’s Method for Computing Weighted Analytic Center for Linear Matrix Inequalities

2019 ◽  
Vol 8 (1) ◽  
pp. 21
Author(s):  
Shafiu Jibrin
2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Shafiu Jibrin

We study the problem of computing weighted analytic center for system of linear matrix inequality constraints. The problem can be solved using Standard Newton’s method. However, this approach requires that a starting point in the interior point of the feasible region be given or a Phase I problem be solved. We address the problem by using Infeasible Newton’s method applied to the KKT system of equations which can be started from any point. We implement the method using backtracking line search technique and also study the effect of large weights on the method. We use numerical experiments to compare Infeasible Newton’s method with Standard Newton’s method. The results show that Infeasible Newton’s method moves in the interior of the feasible regions often very quickly, starting from any point. We recommend it as a method for finding an interior point by setting each weight to be 1. It appears to work better than Standard Newton’s method in finding the weighted analytic center when none of weights is very large relative to the other weights. However, we find that Infeasible Newton’s method is more sensitive than Standard Newton’s method to large variation in the weights.


2018 ◽  
Vol 10 (10) ◽  
pp. 4-19
Author(s):  
Magomed G. GADZHIYEV ◽  
◽  
Misrikhan Sh. MISRIKHANOV ◽  
Vladimir N. RYABCHENKO ◽  
◽  
...  

Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


Author(s):  
Jeremy Nicola ◽  
Luc Jaulin

Linear matrix inequalities (LMIs) comprise a large class of convex constraints. Boxes, ellipsoids, and linear constraints can be represented by LMIs. The intersection of LMIs are also classified as LMIs. Interior-point methods are able to minimize or maximize any linear criterion of LMIs with complexity, which is polynomial regarding to the number of variables. As a consequence, as shown in this paper, it is possible to build optimal contractors for sets represented by LMIs. When solving a set of nonlinear constraints, one may extract from all constraints that are LMIs in order to build a single optimal LMI contractor. A combination of all contractors obtained for other non-LMI constraints can thus be performed up to the fixed point. The resulting propogation is shown to be more efficient than other conventional contractor-based approaches.


Sign in / Sign up

Export Citation Format

Share Document