scholarly journals Culture of Human Gingival Fibroblasts: An Experimental Model

Cell Biology ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Raoul Bationo ◽  
Ablassé Rouamba ◽  
Abdoulaziz Diarra ◽  
Monique Lydie Beugré-Kouassi ◽  
Fabienne Jordana ◽  
...  
2017 ◽  
Author(s):  
Toshiaki Ara ◽  
Norio Sogawa

Previously, we revealed that several kampo medicines which are used for the patients with excess and/or medium patterns [kakkonto (TJ-1), shosaikoto (TJ-9), hangeshashinto (TJ-14), and orento (TJ-120)] decreased prostaglandin (PG)E2 by LPS-treated human gingival fibroblasts (HGFs). Currently, we examined other kampo medicines which are used for the patients with deficiency pattern [bakumondoto (TJ-29), shinbuto (TJ-30), ninjinto (TJ-32), and hochuekkito (TJ-41)] and the herbs which construct shinbuto and ninjinto using the same experimental model. Shinbuto and ninjinto concentration-dependently decreased LPS-induced PGE2 production by HGFs, whereas hochuekkito weakly decreased and bakumondoto did not decrease PGE2 production. Shinbuto and ninjinto did not alter cyclooxygenase (COX) activities and the expressions of molecules involved in arachidonic acid cascade. Next, we examined which herbs constructing shinbuto and ninjinto decrease LPS-induced PGE2 production. Among these herbs, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly and concentration-dependently decreased LPS-induced PGE2 production. However, both shokyo and kankyo did not alter the expressions of molecules involved in arachidonic acid cascade. These results suggest that shokyo and kankyo suppress phospholipase (PL)A2 activity. We demonstrated that kampo medicines for the patients with deficiency pattern may suppress inflammatory responses in addition to those with excess and medium patterns. Moreover, kampo medicines which contain shokyo or kankyo are considered to be effective for the treatment of the inflammatory diseases.


2017 ◽  
Author(s):  
Toshiaki Ara ◽  
Norio Sogawa

Previously, we revealed that several kampo medicines that are used for patients with excess and/or medium patterns [kakkonto (TJ-1), shosaikoto (TJ-9), hangeshashinto (TJ-14), and orento (TJ-120)] reduced prostaglandin (PG)E<2 levels using LPS-treated human gingival fibroblasts (HGFs). Recently, we examined other kampo medicines used for patients with the deficiency pattern [bakumondoto (TJ-29), shinbuto (TJ-30), ninjinto (TJ-32), and hochuekkito (TJ-41)] and the herbs comprising shinbuto and ninjinto using the same experimental model. Shinbuto and ninjinto concentration-dependently reduced LPS-induced PGE2 production by HGFs, whereas hochuekkito weakly reduced and bakumondoto did not reduce PGE2 production. Shinbuto and ninjinto did not alter cyclooxygenase (COX) activity or the expression of molecules involved in the arachidonic acid cascade. Therefore, we next examined which herbs compromising shinbuto and ninjinto reduce LPS-induced PGE2 production. Among these herbs, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly and concentration-dependently decreased LPS-induced PGE2 production. However, both shokyo and kankyo increased the expression of cytosolic phospholipase (cPL)A2 but did not affect annexin1 or COX-2 expression. These results suggest that shokyo and kankyo suppress cPLA2 activity. We demonstrated that kampo medicines suppress inflammatory responses in patients with the deficiency pattern, and in those with excess or medium patterns. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for the treatment of inflammatory diseases.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4120 ◽  
Author(s):  
Toshiaki Ara ◽  
Norio Sogawa

Previously, we revealed that several kampo medicines used for patients with excess and/or medium patterns (kakkonto (TJ-1), shosaikoto (TJ-9), hangeshashinto (TJ-14), and orento (TJ-120)) reduced prostaglandin (PG)E2 levels using LPS-treated human gingival fibroblasts (HGFs). Recently, we examined other kampo medicines used for patients with the deficiency pattern [bakumondoto (TJ-29), shinbuto (TJ-30), ninjinto (TJ-32), and hochuekkito (TJ-41)] and the herbs comprising shinbuto and ninjinto using the same experimental model. Shinbuto and ninjinto concentration-dependently reduced LPS-induced PGE2 production by HGFs, whereas hochuekkito weakly reduced and bakumondoto did not reduce PGE2 production. Shinbuto and ninjinto did not alter cyclooxygenase (COX) activity or the expression of molecules involved in the arachidonic acid cascade. Therefore, we next examined which herbs compromising shinbuto and ninjinto reduce LPS-induced PGE2 production. Among these herbs, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly and concentration-dependently decreased LPS-induced PGE2 production. However, both shokyo and kankyo increased the expression of cytosolic phospholipase (cPL)A2 but did not affect annexin1 or COX-2 expression. These results suggest that shokyo and kankyo suppress cPLA2 activity. We demonstrated that kampo medicines suppress inflammatory responses in patients with the deficiency pattern, and in those with excess or medium patterns. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for the treatment of inflammatory diseases.


2017 ◽  
Author(s):  
Toshiaki Ara ◽  
Norio Sogawa

Previously, we revealed that several kampo medicines that are used for patients with excess and/or medium patterns [kakkonto (TJ-1), shosaikoto (TJ-9), hangeshashinto (TJ-14), and orento (TJ-120)] reduced prostaglandin (PG)E<2 levels using LPS-treated human gingival fibroblasts (HGFs). Recently, we examined other kampo medicines used for patients with the deficiency pattern [bakumondoto (TJ-29), shinbuto (TJ-30), ninjinto (TJ-32), and hochuekkito (TJ-41)] and the herbs comprising shinbuto and ninjinto using the same experimental model. Shinbuto and ninjinto concentration-dependently reduced LPS-induced PGE2 production by HGFs, whereas hochuekkito weakly reduced and bakumondoto did not reduce PGE2 production. Shinbuto and ninjinto did not alter cyclooxygenase (COX) activity or the expression of molecules involved in the arachidonic acid cascade. Therefore, we next examined which herbs compromising shinbuto and ninjinto reduce LPS-induced PGE2 production. Among these herbs, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly and concentration-dependently decreased LPS-induced PGE2 production. However, both shokyo and kankyo increased the expression of cytosolic phospholipase (cPL)A2 but did not affect annexin1 or COX-2 expression. These results suggest that shokyo and kankyo suppress cPLA2 activity. We demonstrated that kampo medicines suppress inflammatory responses in patients with the deficiency pattern, and in those with excess or medium patterns. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for the treatment of inflammatory diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chu-nan Zhang ◽  
Lin-yi Zhou ◽  
Shu-jiao Qian ◽  
Ying-xin Gu ◽  
Jun-yu Shi ◽  
...  

Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.


Sign in / Sign up

Export Citation Format

Share Document