scholarly journals Improved response of human gingival fibroblasts to titanium coated with micro-/nano-structured tantalum

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chu-nan Zhang ◽  
Lin-yi Zhou ◽  
Shu-jiao Qian ◽  
Ying-xin Gu ◽  
Jun-yu Shi ◽  
...  

Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.

2016 ◽  
Vol 27 (5) ◽  
pp. 492-496 ◽  
Author(s):  
Fabiano Palmeira Gonçalves ◽  
◽  
Gutemberg Alves ◽  
Vladi Oliveira Guimarães Júnior ◽  
Marco Antônio Gallito ◽  
...  

Abstract Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.


2018 ◽  
Vol 17 (4) ◽  
pp. 556-561
Author(s):  
I Bramanti ◽  
ISR Sudarso ◽  
MSH Wahyuningsih ◽  
T Wibawa ◽  
VM Karina ◽  
...  

Introduction: Garlic is a natural herb which can be used to be a good alternative treatment because cheap and safe. Garlic contains allicin which may has act antibacterial and antiinflammatory effect. Moreover, garlic extract has a good biocompatibility and can stimulate cell growth. Does garlic extract biocompatible and can stimulate cell growth that is seen from the proliferation of human gingival fibroblasts and how its work will be studied.Objective: The aim of this study was to analyze the biocompatibility of garlic extract by observing the viability and proliferation of human gingival fibroblasts in vitro.Methods: Biocompatibility test was conducted using serial concentration of garlic extract. Human gingival fibroblasts was seeded into 96 microwell plate with density of 2x103 cells, added with the fourteen serial concentration of garlic extract, and incubated in 37o C and 5% CO2for 24, 48 and 72 hours. MTT assay was used to analyze the viability and proliferation of human gingival fibroblasts. Data were analyzed by the Kruskal Wallis and U Mann-Whitney test.Results: The result showed that in each time of observation, there is no significant difference in viability fibroblast (p>0,05), but there are significant difference between time of observation at 24, 48, and 72 hours (p <0.05).Data showed that all concentration of garlic extract increased the viability and proliferation of human gingival fibroblasts.Conclusions: The ethanolic garlic extract has a good biocompatibility to human gingival fibroblasts culture cell and can stimulate the proliferation of human gingival fibroblast.Bangladesh Journal of Medical Science Vol.17(4) 2018 p.556-561


2021 ◽  
Author(s):  
Masoumeh Faramarzi ◽  
Leila Roshangar ◽  
Adileh Shirmohammadi ◽  
Mehrnoosh Sadighi ◽  
Azadeh Madanipour ◽  
...  

Abstract Objective Attachment of peri- implant mucosa to implant is crucial for long term survival of implant. Soft tissue healing around implants has been of great interest due to its important role in long-term maintenance of implant therapy. Considering the critical role of gingival fibroblasts in periodontal repair, the aim of this study was to evaluate the Concentrated Growth Factor (CGF) as an innovative approach to accelerate wound healing and increase the connective tissue seal around dental implants. Results 40% and 80% Concentrations of CGF significantly improved human gingival fibroblasts (HGF) viability compared to the control group (P value = 0.001). But the comparison of the other group with the control group was not statistically significant. The difference between 40% and 80% concentrations of CGF was not statistically significant (P value = 0.061). Results showed that the viability of HGF treated with CGF on titanium discs(test groups 2) significantly increased as compared to the test groups 1(without CGF) at 24 hours (P value = 0.001).Our results showed that 40% concentration of CGF at 24 hours significantly increased HGF viability.


2021 ◽  
Author(s):  
Zhendi Fu ◽  
Xuehua Deng ◽  
Xiaodan Fang

Abstract Background: Human gingival fibroblasts (hGFs) have key roles in the formation of soft-tissue attachments around dental implants. We added calcium ions (Ca2+) to the surface of titanium plates (TPs) to make it more conducive to the early adhesion and proliferation of hGFs. Methods: Ca2+ was loaded onto the TP surface by a hydrothermal method. The morphology and composition of TP surfaces were determined by scanning electron microscopy and energy-dispersive spectroscopy. Proliferation of hGF-1 cells was measured by the CCK-8 assay. Immunofluorescence staining was done to detect adherent proteins on the TP surface. TPs were divided randomly into two groups: control and Ca.Results: In the Ca group, irregular lamellar crystals were found on the surface of TPs; The percentage of hGF-1 cells adhering to TPs in the Ca group was significantly higher than that in control group (P < 0.01); The fluorescence of integrin-β1 and F-actin in the Ca group was stronger than that in the control group. Conclusions: Our data suggest that Ca2+ can be added to TP surfaces by a hydrothermal method, and can enhance hGF adhesion. This property may be beneficial if Ca2+ is added to titanium surfaces before dental implantation.


2016 ◽  
Vol 5 (2) ◽  
pp. 83-88
Author(s):  
Thuy Anh Vu Pham ◽  
Hao TT Nguyen ◽  
My TN Nguyen ◽  
Van NL Trinh ◽  
Nga Y Tran ◽  
...  

ABSTRACT Aims Our study focused on the fabrication of platelet-rich fibrin (PRF) and evaluated its influences on cell behaviors, including proliferation and migration. Materials and methods Platelet-rich fibrin was prepared from human peripheral blood according to Choukroun's method without using nonanticoagulant and foreign factors for platelet activation. Platelet-rich fibrin architecture was studied by hematoxylin and eosin staining. The investigation of PRF effects on human gingival fibroblasts (hGFs) was conducted via PRF liquid extract. Cell proliferation was determined via the number of cells after a period of time incubated in PRF liquid extract. Influence of PRF liquid extract on the migration of hGFs was conducted via scratch wound healing assay. Results Histological staining reviewed the natural fibrin fiber matrix of PRF. Platelet-rich fibrin liquid extract promoted hGF proliferation after 7 days of cultivation. Human gingival fibroblast proliferation in PRF liquid extract was more superior than those cultured in complete medium. Platelet-rich fibrin was also found to be able to promote the migration of hGFs for up to 48 hours. Conclusion These results indicated that PRF is suitable to be used as autologous natural biomaterial in supporting wound healing and in further application in periodontitis treatments. How to cite this article Nguyen HTT, Nguyen MTN, Trinh VNL, Tran NY, Ngo LTQ, Pham TAV, Tran HLB. Platelet-rich Fibrin Influences on Proliferation and Migration of Human Gingival Fibroblasts. Int J Experiment Dent Sci 2016;5(2):83-88.


2007 ◽  
Vol 86 (1) ◽  
pp. 41-46 ◽  
Author(s):  
E. Zeldich ◽  
R. Koren ◽  
C. Nemcovsky ◽  
M. Weinreb

Emdogain®, a formulation of Enamel Matrix Proteins, is used clinically for periodontal regeneration to stimulate PDL (periodontal ligament), cementum, and bone formation. Its effects on gingival fibroblasts and tissue have not been thoroughly studied. Therefore, we investigated the mechanisms by which Emdogain affects the cell cycle of human gingival fibroblasts. Without serum, Emdogain (50 μg/mL) induced human gingival fibroblast entry into the S phase and DNA synthesis, but not completion of the cell cycle. With low serum concentrations (0.2–0.5%), Emdogain synergistically induced completion of the cell cycle, resulting in increased cell numbers. The mitogenic response to Emdogain depended on Extracellular Regulated Kinase (ERK) activation, which occurred in two waves, peaking after 15 min and 4 to 6 hrs, since it was abolished by U0126, a specific MAPK inhibitor. Inhibition of the second wave was sufficient to abrogate mitogenesis. This study characterized the mitogenic effect of Emdogain on primary human gingival fibroblasts, its cooperation with serum growth factors, and the key mediatory role of the ERK cascade.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Tang Chin ◽  
Meng-Ti Hsieh ◽  
Chi-Yu Lin ◽  
Po-Jan Kuo ◽  
Yu-Chen S. H. Yang ◽  
...  

Periodontitis, a chronic infection by periodontopathic bacteria, induces uncontrolled inflammation, which leads to periodontal tissue destruction. 2,3,5,4′-Tetrahydroxystilbene-2-O-beta-glucoside (THSG), a polyphenol extracted from Polygoni Multiflori, reportedly has anti-inflammatory properties. In this study, we investigated the mechanisms of THSG on thePorphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. Human gingival fibroblast cells were treated with lipopolysaccharide (LPS) extracted fromP. gingivalisin the presence of resveratrol or THSG to analyze the expression of TNF-α, IL-1β, and IL-6 genes. Increased AMP-activated protein kinase (AMPK) activation and SirT1 expression were induced by THSG. Treatment of THSG decreased the expression of LPS-induced inflammatory cytokines, enhanced AMPK activation, and increased the expression of SirT1. In addition, it suppressed the activation of NF-κB when cells were stimulated withP. gingivalisLPS. The anti-inflammatory effect of THSG and P. Multiflori crude extracts was reproduced in ligature-induced periodontitis animal modeling. In conclusion, THSG inhibited the inflammatory responses ofP. gingivalis-stimulated human gingival fibroblasts and ameliorated ligature-induced periodontitis in animal model.


2019 ◽  
Vol 10 ◽  
pp. 204173141982895 ◽  
Author(s):  
Maria H Pham ◽  
Håvard J Haugen ◽  
Alessandra Rinna ◽  
Jan Eirik Ellingsen ◽  
Janne E Reseland

The attachment of implants relies on bone and soft tissue biocompatibility. The aim of this article is to investigate the effect of fluoride-modified metallic titanium (Ti) surfaces (Ti-F) on proliferation and differentiation of human gingival fibroblasts. Human gingival fibroblast cells were exposed to hydrofluoric acid–modified Ti coins (Ti-F) for 1, 3, 7, 14 and 21 days, and untreated coins were used as controls. A five- to six-fold increase in the proliferation of human gingival fibroblasts on Ti-F compared to Ti surfaces was observed. Enhanced gene expression of interleukin-6 and osteoprotegerin was found at 7 days. Increased levels of sclerostin, interleukin-6 and osteoprotegerin in the media from human gingival fibroblasts cultured on Ti-F coins were found compared to controls. Our results confirm that hydrofluoric acid–modified surface may indirectly enhance the firm attachment of implant surface to junction epithelium, soft tissue epithelium, which would give protection for underlying osseous structures making osseointegration of the dental implant possible.


2008 ◽  
Vol 78 (3) ◽  
pp. 510-516 ◽  
Author(s):  
Tsui-Hsien Huang ◽  
Pao-Hsin Liao ◽  
Han Yu Li ◽  
Shinn Jyh Ding ◽  
Min Yen ◽  
...  

Abstract Objective: To test the null hypothesis that the resin base and the resin hybrid glass ionomer base adhesives do not cause inflammation after contacting primary human gingival fibroblasts in vitro. Materials and Methods: The resin base and resin hybrid glass ionomer base adhesives were used to treat human gingival fibroblasts to evaluate the survival rate using MTT colorimetric assay to detect the level of cyclooxygenase-2 (COX-2) mRNA by reverse transcription polymerase chain reaction (RT-PCR) technique and COX-2 protein expression using Western blot analysis. The results were analyzed using one-way analysis of variance (ANOVA). Tests of differences of the treatments were analyzed using the Tukey test and a value of P &lt; .05 was considered statistically significant. Results: The paste and primer of the resin base adhesive and the liquid of glass ionomer adhesive showed decreasing survival rates after 24 hours of treatment (P &lt; .05). All orthodontic adhesives induced COX-2 protein expression in human gingival fibroblasts. The exposure of quiescent human gingival fibroblasts to adhesives resulted in the induction of COX-2 mRNA expression. The investigations of the time-dependent COX-2 mRNA expression in adhesive-treated human gingival fibroblasts revealed different patterns. Conclusions: The hypothesis is rejected. For orthodontic patients with gingival inflammation, except for those with oral hygiene problems, the activation of COX-2 expression by orthodontic adhesive may be one of the potential mechanisms.


2010 ◽  
Vol 21 (3) ◽  
pp. 179-189 ◽  
Author(s):  
Annelissa Zorzeto Rodrigues ◽  
Paulo Tambasco de Oliveira ◽  
Arthur Belém Novaes Jr. ◽  
Luciana Prado Maia ◽  
Sérgio Luís Scombatti de Souza ◽  
...  

The acellular dermal matrix (ADM) was introduced in periodontology as a substitute for the autogenous grafts, which became restricted because of the limited source of donor's tissue. The aim of this study was to investigate, in vitro, the distribution, proliferation and viability of human gingival fibroblasts seeded onto ADM. ADM was seeded with human gingival fibroblasts for up to 21 days. The following parameters were evaluated: cell distribution, proliferation and viability. Results revealed that, at day 7, fibroblasts were adherent and spread on ADM surface, and were unevenly distributed, forming a discontinuous single cell layer; at day 14, a confluent fibroblastic monolayer lining ADM surface was noticed. At day 21, the cell monolayer exhibited a reduction in cell density. At 7 days, about to 90% of adherent cells on ADM surface were cycling while at 14 and 21 days this proportion was significantly reduced. A high proportion of viable cell was detected on AMD surface both on 14 and 21 days. The results suggest that fibroblast seeding onto ADM for 14 days can allow good conditions for cell adhesion and spreading on the matrix; however, migration inside the matrix was limited.


Sign in / Sign up

Export Citation Format

Share Document