scholarly journals Fine Prediction for Mine Water Inflow on Basis of Visual Modflow

Author(s):  
Wang Guorui
2020 ◽  
Vol 13 (17) ◽  
Author(s):  
Jiuchuan Wei ◽  
Guanghui Li ◽  
Daolei Xie ◽  
Gongyishan Yu ◽  
Xiaoquan Man ◽  
...  

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Jianlin Li ◽  
Luyang Wang ◽  
Xinyi Wang ◽  
Peiqiang Gao

AbstractArtificial neural network (ANN) provides a new way for mine water inflow prediction. However, the effectiveness of prediction using ANN model would not be guaranteed if the influencing factors of water inflow are difficult to quantify or there are only a few observation data. Chaos theory can recover the rich dynamic information hidden in time series. By reconstructing water inflow time series in phase space, the multi-dimensional matrix could be obtained, with each column representing an influencing factor of water inflow and its value representing the change of the influencing factor with time. Therefore, a new prediction model of mine water inflow can be established by combining ANN with chaos theory when lacking data on the influencing factors of water inflow. In the present study, the No. 12 coal mine of Pingdingshan China was selected as the study site. The Chaos-GRNN model and Chaos- BPNN model of mine, water inflow were established by using the water inflow data from February 1976 to December 2013. The model was verified by using the water inflow values in the 24 months from 2014 to 2015. The number embedded dimension (M) of influencing factors of water inflow determined by phase space reconstruction was 7, meaning that there were 7 influencing factors of water inflow and 7 neurons in GRNN input layer, and the time delay was 13 months. The value of GRNN input layer neurons was determined accordingly. The maximum Lyapunov index was 0.0530, and the prediction time of GRNN was 19 months. The two models were evaluated by using four evaluation indices (R, RMSE, MAPE, NSE) and violin plot. It was found that both models can realize the long-term prediction of water inflow, and the prediction effectiveness of Chaos-GRNN model is better than that of Chaos-BPNN model.


2014 ◽  
Vol 989-994 ◽  
pp. 1814-1820 ◽  
Author(s):  
Ai Jun Shao ◽  
Qing Xin Meng ◽  
Shi Wen Wang ◽  
Ying Liu

Based on predictions of the mine inflow of water and the complexity of influential factors, a method of BP neural network is put forward for mine inrush water prediction in this paper. We chose proper impact factors and establish non-linear artificial neural network prediction model after analyzed the impact factors of mine water inflow in Shandong Heiwang iron, and also made one prediction with normal mine water inflow during the iron mining operation. It turned out that the result can match with the actual prediction data, which make it possible to predict the mine water inflow with the prediction of Artificial Neural Network.


2013 ◽  
Vol 734-737 ◽  
pp. 888-891
Author(s):  
Chen Shi

Water probe in coal mine working face is an important part of the work of Mine Water. When the mine working face close to the aquifer hydraulic conductivity faults, underground rivers, caves and hydraulic conductivity collapse columns; extractive damaging effects, water probe should be done. However, the calculation of water inflow face probe has no feasible way. This paper discussed the theoretical calculations to explore water drilling inflow well group interference method and provides the basis for provision of drainage system for the coal mining enterprises.


Sign in / Sign up

Export Citation Format

Share Document