Allergic Lung Inflammation Is Mediated by Soluble Tumor Necrosis Factor (TNF) and Attenuated by Dominant-Negative TNF Biologics

2011 ◽  
Vol 45 (4) ◽  
pp. 731-739 ◽  
Author(s):  
Isabelle Maillet ◽  
Silvia Schnyder-Candrian ◽  
Isabelle Couillin ◽  
Valerie F. J. Quesniaux ◽  
Francois Erard ◽  
...  
2004 ◽  
Vol 15 (7) ◽  
pp. 3266-3284 ◽  
Author(s):  
Romaine Ingrid Fernando ◽  
Jay Wimalasena

Estrogens such as 17-β estradiol (E2) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E2 abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-α, H2O2, and serum starvation in causing apoptosis. Furthermore, the ability of E2 to prevent tumor necrosis factor-α-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90RSK1 and Akt, was not phosphorylated in response to E2 in vitro. E2 treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90RSK1 to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90RSK1 activation, E2 also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E2. Dominant negative Ras blocked E2-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E2-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E2-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E2 prevents apoptosis.


1997 ◽  
Vol 186 (12) ◽  
pp. 2075-2080 ◽  
Author(s):  
Brian R. Wong ◽  
Régis Josien ◽  
Soo Young Lee ◽  
Birthe Sauter ◽  
Hong-Li Li ◽  
...  

TRANCE (tumor necrosis factor [TNF]–related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor–associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow–derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-xL expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival of T or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell–DC communication and may provide a tool to selectively enhance DC activity.


2008 ◽  
Vol 205 (5) ◽  
pp. 1037-1048 ◽  
Author(s):  
Lei Fang ◽  
Becky Adkins ◽  
Vadim Deyev ◽  
Eckhard R. Podack

We identify the tumor necrosis factor receptor superfamily 25 (TNFRSF25)/TNFSF15 pair as critical trigger for allergic lung inflammation, which is a cardinal feature of asthma. TNFRSF25 (TNFR25) signals are required to exert T helper cell 2 (Th2) effector function in Th2-polarized CD4 cells and co-stimulate interleukin (IL)-13 production by glycosphingolipid-activated NKT cells. In vivo, antibody blockade of TNFSF15 (TL1A), which is the ligand for TNFR25, inhibits lung inflammation and production of Th2 cytokines such as IL-13, even when administered days after airway antigen exposure. Similarly, blockade of TNFR25 by a dominant-negative (DN) transgene, DN TNFR25, confers resistance to lung inflammation in mice. Allergic lung inflammation–resistant, NKT-deficient mice become susceptible upon adoptive transfer of wild-type NKT cells, but not after transfer of DN TNFR25 transgenic NKT cells. The TNFR25/TL1A pair appears to provide an early signal for Th2 cytokine production in the lung, and therefore may be a drug target in attempts to attenuate lung inflammation in asthmatics.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 857-865 ◽  
Author(s):  
Matthias Goebeler ◽  
Karin Kilian ◽  
Reinhard Gillitzer ◽  
Manfred Kunz ◽  
Teizo Yoshimura ◽  
...  

Abstract Monocyte chemoattractant protein-1 (MCP-1), a member of the C-C subfamily of chemokines, is important for the local recruitment of leukocytes to sites of inflammatory challenge. Here, we investigated endothelial signaling pathways involving members of the mitogen-activated protein (MAP) kinase superfamily and studied their role for MCP-1 expression in endothelium. We show that tumor necrosis factor- (TNF-), a potent inflammatory activator of endothelium, leads to activation of MAP kinases ERK, p38, and JNK in human umbilical vein endothelial cells (HUVEC). Contribution of MAP kinase pathways to TNF-–induced synthesis of endothelial MCP-1 was then studied by pharmacologic inhibition and transient expression of dominant negative or constitutively active kinase mutants using flow cytometry, Northern blot, and luciferase reporter gene assays. Inhibition of Raf/MEK/ERK or SEK/JNK pathways had no significant effect on MCP-1 levels, whereas blocking the MKK6/p38 pathway by p38 inhibitors SB203580 or SB202190 or by a dominant negative mutant of MKK6, the upstream activator of p38, strongly inhibited TNF-–induced expression of MCP-1. Consistent with that finding, expression of wild-type or constitutively active MKK6 significantly enhanced the effect of limiting TNF- concentrations on MCP-1 synthesis. These data suggest a crucial role for the MKK6/p38 stress kinase cascade in TNF-–mediated endothelial MCP-1 expression.


2008 ◽  
Vol 295 (2) ◽  
pp. C432-C439 ◽  
Author(s):  
Han Geun Kim ◽  
Joo Yun Kim ◽  
Min Geun Gim ◽  
Jung Min Lee ◽  
Dae Kyun Chung

We studied centrifugation-mediated mechanical stress-induced tumor necrosis factor-α (TNF-α) production in the monocyte-like cell line THP-1. The induction of TNF-α by mechanical stress was dependent on the centrifugation speed and produced the highest level of TNF-α after 1 h of stimulation. TNF-α production returned to normal levels after 24 h of stimulation. Mechanical stress also induced Toll-like receptor-2 (TLR2) mRNA in proportion to the expression of TNF-α. The inhibition of TLR2 signaling by dominant negative myeloid differentiation factor 88 (MyD88) blocked TNF-α expression response to mechanical stress. After transient overexpression of TLR2 in HEK-293 cells, mechanical stress induced TNF-α mRNA production. Interestingly, mechanical stress activated the c-Src-dependent TLR2 phosphorylation, which is necessary to induce Ca2+ fluxes. When THP-1 cells were pretreated with BAPTA-AM, thapsigargin, and NiCl2·6H2O, followed by mechanical stimulation, both TLR2 and TNF-α production were inhibited, indicating that centrifugation-mediated mechanical stress induces both TLR2 and TNF-α production through Ca2+ releases from intracellular Ca2+ stores following TLR2 phosphorylation. In addition, TNF-α treatment in THP-1 cells induced TLR2 production in response to mechanical stress, whereas the preincubation of anti-TNF-α antibody scarcely induced the mechanical stress-mediated production of TLR2, indicating that TNF-α produced by mechanically stimulated THP-1 cells affected TLR2 production. We concluded that TNF-α production induced by centrifugation-mediated mechanical stress is dependent on MyD88-dependent TLR2 signaling that is associated with Ca2+ release and that TNF-α production induced by mechanical stress affects TLR2 production.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 857-865 ◽  
Author(s):  
Matthias Goebeler ◽  
Karin Kilian ◽  
Reinhard Gillitzer ◽  
Manfred Kunz ◽  
Teizo Yoshimura ◽  
...  

Monocyte chemoattractant protein-1 (MCP-1), a member of the C-C subfamily of chemokines, is important for the local recruitment of leukocytes to sites of inflammatory challenge. Here, we investigated endothelial signaling pathways involving members of the mitogen-activated protein (MAP) kinase superfamily and studied their role for MCP-1 expression in endothelium. We show that tumor necrosis factor- (TNF-), a potent inflammatory activator of endothelium, leads to activation of MAP kinases ERK, p38, and JNK in human umbilical vein endothelial cells (HUVEC). Contribution of MAP kinase pathways to TNF-–induced synthesis of endothelial MCP-1 was then studied by pharmacologic inhibition and transient expression of dominant negative or constitutively active kinase mutants using flow cytometry, Northern blot, and luciferase reporter gene assays. Inhibition of Raf/MEK/ERK or SEK/JNK pathways had no significant effect on MCP-1 levels, whereas blocking the MKK6/p38 pathway by p38 inhibitors SB203580 or SB202190 or by a dominant negative mutant of MKK6, the upstream activator of p38, strongly inhibited TNF-–induced expression of MCP-1. Consistent with that finding, expression of wild-type or constitutively active MKK6 significantly enhanced the effect of limiting TNF- concentrations on MCP-1 synthesis. These data suggest a crucial role for the MKK6/p38 stress kinase cascade in TNF-–mediated endothelial MCP-1 expression.


2006 ◽  
Vol 80 (18) ◽  
pp. 9300-9309 ◽  
Author(s):  
Lisa M. Sedger ◽  
Sarah R. Osvath ◽  
Xiao-Ming Xu ◽  
Grace Li ◽  
Francis K.-M. Chan ◽  
...  

ABSTRACT The poxvirus tumor necrosis factor receptor (TNFR) homologue T2 has immunomodulatory properties; secreted myxoma virus T2 (M-T2) protein binds and inhibits rabbit TNF-α, while intracellular M-T2 blocks virus-induced lymphocyte apoptosis. Here, we define the antiapoptotic function as inhibition of TNFR-mediated death via a highly conserved viral preligand assembly domain (vPLAD). Jurkat cell lines constitutively expressing M-T2 were generated and shown to be resistant to UV irradiation-, etoposide-, and cycloheximide-induced death. These cells were also resistant to human TNF-α, but M-T2 expression did not alter surface expression levels of TNFRs. Previous studies indicated that T2's antiapoptotic function was conferred by the N-terminal region of the protein, and further examination of this region revealed a highly conserved N-terminal vPLAD, which is present in all poxvirus T2-like molecules. In cellular TNFRs and TNF-α-related apoptosis-inducing ligand (TRAIL) receptors (TRAILRs), PLAD controls receptor signaling competency prior to ligand binding. Here, we show that M-T2 potently inhibits TNFR1-induced death in a manner requiring the M-T2 vPLAD. Furthermore, we demonstrate that M-T2 physically associates with and colocalizes with human TNFRs but does not prevent human TNF-α binding to cellular receptors. Thus, M-T2 vPLAD is a species-nonspecific dominant-negative inhibitor of cellular TNFR1 function. Given that the PLAD is conserved in all known poxvirus T2-like molecules, we predict that it plays an important function in each of these proteins. Moreover, that the vPLAD confers an important antiapoptotic function confirms this domain as a potential target in the development of the next generation of TNF-α/TNFR therapeutics.


1998 ◽  
Vol 187 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Masaki Kashiwada ◽  
Yumiko Shirakata ◽  
Jun-Ichiro Inoue ◽  
Hiroyasu Nakano ◽  
Kenji Okazaki ◽  
...  

CD40 activates nuclear factor kappa B (NFκB) and the mitogen-activated protein kinase (MAPK) subfamily, including extracellular signal–regulated kinase (ERK). The CD40 cytoplasmic tail interacts with tumor necrosis factor receptor–associated factor (TRAF)2, TRAF3, TRAF5, and TRAF6. These TRAF proteins, with the exception of TRAF3, are required for NFκB activation. Here we report that transient expression of TRAF6 stimulated both ERK and NFκB activity in the 293 cell line. Coexpression of the dominant-negative H-Ras did not affect TRAF6-mediated ERK activity, suggesting that TRAF6 may activate ERK along a Ras-independent pathway. The deletion mutant of TRAF6 lacking the NH2-terminal domain acted as a dominant-negative mutant to suppress ERK activation by full-length CD40 and suppress prominently ERK activation by a deletion mutant of CD40 only containing the binding site for TRAF6 in the cytoplasmic tail (CD40Δ246). Transient expression of the dominant-negative H-Ras significantly suppressed ERK activation by full-length CD40, but marginally suppressed ERK activation by CD40Δ246, compatible with the possibility that TRAF6 is a major transducer of ERK activation by CD40Δ246, whose activity is mediated by a Ras-independent pathway. These results suggest that CD40 activates ERK by both a Ras-dependent pathway and a Ras-independent pathway in which TRAF6 could be involved.


Sign in / Sign up

Export Citation Format

Share Document