Alkali Silica Reaction Expansion and Mechanical Properties of Concrete Containing Glass Aggregate with Different Sizes

2011 ◽  
Vol 4 (4) ◽  
pp. 1611-1616 ◽  
Author(s):  
Yuan Zhuang ◽  
Chunxiang Qian ◽  
Wen Xu
2019 ◽  
Vol 955 ◽  
pp. 62-67
Author(s):  
Lukáš Procházka ◽  
Jana Boháčová

Alkali substances are present in cements used as a binder in concrete only in a minimum content. The most known process that alkali causes is the alkali-silica reaction. In this reaction, the alkali contained in the cement or supplied from the outside with an inappropriately selected aggregate containing amorphous SiO2. This reaction results in the development of hydration products, resulting in an increase in the volume of the original components, which can cause a breakage of the concrete structure and subsequent disintegration. The range of alkali-silica reaction can be reduced by the use of a suitable aggregate or the use of Type II admixtures which are characterized by pozzolanic or latently hydraulic activity. These admixtures react with alkali and then no longer react with the amorphous SiO2 contained in the aggregate. Alkalis also affect other properties of concrete such as basic physical-mechanical properties, frost resistance and pH.In the experimental part the pH values were compared between mixtures of Portland cement and alkaline activated blast furnace slag using slag aggregate from the heap Koněv.


2020 ◽  
Vol 111 ◽  
pp. 103623
Author(s):  
Fuyuan Gong ◽  
Yuya Takahashi ◽  
Izuru Segawa ◽  
Koichi Maekawa

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3189 ◽  
Author(s):  
Marcin Małek ◽  
Waldemar Łasica ◽  
Mateusz Jackowski ◽  
Marta Kadela

A responsible approach towards sustainable development requires the use of environmentally friendly, low-carbon, and energy-intensive materials. One positive way is to use glass waste as a replacement for fine natural aggregate. For this purpose, the effects of adding glass cullet to the mechanical properties of mortar were carried out. The glass aggregate made from recycled post-consumer waste glass (food, medicine, and cosmetics packaging, including mostly bottles), were used. This experimental work included four different contents of fine glass cullet (5, 10, 15, and 20 wt.% of fine aggregate). The compressive, flexural, and split tensile strengths were evaluated. Moreover, the modulus of elasticity and Poisson coefficient were determined. The addition of glass sand aggregate increases the mechanical properties of mortar. When comparing the strength, the obtained improvement in split tensile strength was the least affected. The obtained effect for the increased analysed properties of the glass sand aggregate content has been rarely reported. Moreover, it was determined that by increasing the recycled glass sand aggregate content, the density of mortar decreased. In addition, the relationships between the properties for mortar containing glass sand aggregate were observed.


2015 ◽  
Vol 16 (2) ◽  
pp. 275-285 ◽  
Author(s):  
Jiong-Feng Liang ◽  
Ze-Ping Yang ◽  
Ping-Hua Yi ◽  
Jian-Bao Wang

2004 ◽  
Vol 34 (12) ◽  
pp. 2181-2189 ◽  
Author(s):  
Seung Bum Park ◽  
Bong Chun Lee ◽  
Jeong Hwan Kim

2022 ◽  
Vol 961 (1) ◽  
pp. 012082
Author(s):  
Taghreed Abd-Almahdee Musa ◽  
Hiba Ali Abbas ◽  
Ayam Jabbar Jihad

Abstract This study includes the effect of using different dosages of integral waterproof Admixture and silica fume on some mechanical properties of concrete. Concrete improved by using different ratios of integral water proof admixture(IWP admixture) to increase strength and durability, this admixture used as percentages from cement weight in each mix ranged from 0.0% to 2% ( 0.0, 1.0%, 1.2%,1.4%,1.6%,1.8%, and 2%), compressive strength test done for cubes with (10*10*10) cm for each mix. The flexural strength test was done by (10*10*40) cm beams and tested after 28 days of curing. comparison study was made between silica fume mixes properties and mixes without silica fume. Adding IWP admixture leads to increase mechanical properties of ordinary concrete, the reference mix shows compressive strength equal to 26.38 MPa, while mixes with 2% IWP gives 38.8 MPa in this study. The study also includes the effect of using 2 main dosages of silica fume to the mixes that contain IWP, the new concrete with two admixtures show better values of compressive, tensile and flexural strength comparing with mixes with only IWP, the compressive strength increased from 38.8 MPa for ordinary IWP mixes to 52.3 MPa for 10% silica fume concrete mixes, and also the flexural strength increased from 4.8 MPa for mixes with only IWP to 7.3 MPa for mixes modified with 10 % silica fume. Study include also using waste glass as fine aggregate in mixes contain IWP and 10% silica fume and that show more increment in mechanical properties also.


Sign in / Sign up

Export Citation Format

Share Document