Information Management System of Pork Supply Chain Based on Internet of Things Technology

2012 ◽  
Vol 6 (1) ◽  
pp. 472-476 ◽  
Author(s):  
Congguo Ma ◽  
Wei Ni
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Panhong Ren ◽  
Mengjian Nie ◽  
Hui Ming

Based on the technology of Internet of Things, this paper proposes a sports good recycling management system and realizes the system optimization. Based on the management of returned good flow based on the Internet of Things, we can comprehensively apply system integration technology, system architecture, cloud computing technology, etc., based on the current situation of surrounding return flow management, combined with the reality of the sports product recycling business process. From two aspects of process information and operation information, based on the information system of each link of the Internet of Things recycling, a recycling logistics information management system platform is constructed. This can solve the problem of the integrated management of the recycling logistics process and the operation control of the recycling logistics management system. In the stage of sports information management, combined with the Internet of Things technology, we should do a good job of sports artificial intelligence management and information knowledge exploration. In the development of sports under the framework of the Internet of Things, we should combine the needs of sports information management and the technology mode of the Internet of Things, so as to realize the scientific and standardized management of sports good recycling under the Internet of Things technology.


2011 ◽  
pp. 2575-2588
Author(s):  
Ketan Vanjara

This chapter initiates the concept of a customercentric model in supply chain systems. It discusses various constraints of present-day supply chain systems resulting from their roots being in logistics management and suggests an alternative next-level paradigm of a customer-centric matrix model. This chapter further demonstrates how this model would add value to the customer by taking the example of a healthcare information management system. The chapter also delves into the limitations of and anticipated issues and challenges in implementing the suggested model. Finally, the chapter hints at some broad directions for future research and action in the field. Emergent behavior is what happens when an interconnected system of relatively simple elements begins to self-organize to form a more intelligent and more adaptive higher-level system (Johnson, 2001).


2020 ◽  
Vol 12 (14) ◽  
pp. 5750
Author(s):  
Raffaele Cantelmi ◽  
Giulio Di Gravio ◽  
Riccardo Patriarca

Supply chain management (SCM) represents a crucial role in the military sector to ensure operation sustainability. Starting from the NATO handbook for military organizational learning, this paper aims at investigating the link between technical inconveniences and sustainable supply chain operations. Taking advantage of the learning from incidents (LFI) models traditionally used in the risk and safety management area, this paper proposes an information management system to support organizational learning from technical inconveniences in a military supply chain. The approach is discussed with reference to the Italian context, in line with international and national standards for technical inconvenience reporting. The results of the paper show the benefits of adopting a systematic LFI system for technical inconveniences, providing related exemplar business intelligence dashboards. Further implications for the generalization of the proposed information management system are presented to foster a healthy and effective reporting environment in military scenarios.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaofeng Wu ◽  
Fangyuan Ren ◽  
Yiming Li ◽  
Zhenwei Chen ◽  
Xiaoling Tao

With the rapid development of the Internet of Things (IoT) technology, it has been widely used in various fields. IoT device as an information collection unit can be built into an information management system with an information processing and storage unit composed of multiple servers. However, a large amount of sensitive data contained in IoT devices is transmitted in the system under the actual wireless network environment will cause a series of security issues and will become inefficient in the scenario where a large number of devices are concurrently accessed. If each device is individually authenticated, the authentication overhead is huge, and the network burden is excessive. Aiming at these problems, we propose a protocol that is efficient authentication for Internet of Things devices in information management systems. In the proposed scheme, aggregated certificateless signcryption is used to complete mutual authentication and encrypted transmission of data, and a cloud server is introduced to ensure service continuity and stability. This scheme is suitable for scenarios where large-scale IoT terminal devices are simultaneously connected to the information management system. It not only reduces the authentication overhead but also ensures the user privacy and data integrity. Through the experimental results and security analysis, it is indicated that the proposed scheme is suitable for information management systems.


Sign in / Sign up

Export Citation Format

Share Document