Investigation of Multiple Pathogens in Black-Spotted Dendrobium officinale Based on Culture-Independent and Dependent Methods

2020 ◽  
Vol 14 (2) ◽  
pp. 249-257
Author(s):  
Xiaoying Han ◽  
Yihong Dai ◽  
Miao Hu ◽  
Rong Xiao ◽  
Shuaishuai Zhang ◽  
...  

Black spot disease which significantly reduces the quality of medicine plants is quite common in Dendrobium officinale fields. In this study, GXDF33, a strain of Alternaria, together with the reported pathogen Cladosporium, was isolated from symptomatic leaves. The in vitro pathogenicity tests on seedlings showed GXDF33 can cause black spot disease. Based on quantitative real-time polymerase chain reaction (qPCR) result, it was found that the biomass of both Cladosporium and Alternaria increased as the symptom went severer. According to amplicon sequencing data for the symptomatic samples from Guangxi and Zhejiang Provinces in China, Cladosporium and Alternaria were both common genera in symptomatic plants. To our knowledge, this is the first report unveiling the relationship between black spot disease of D. officinale and Cladosporium as well as Alternaria.

Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1513-1518 ◽  
Author(s):  
Tami Gat ◽  
Orna Liarzi ◽  
Yulia Skovorodnikova ◽  
David Ezra

Black spot disease of pomegranate is a relatively new disease in Israel that is caused by Alternaria alternata. The symptoms include black spots on leaves and fruit. Only the outer part of the fruit is damaged; the edible tissue remains unaffected. In this study, we obtained 50 isolates of A. alternata from infected pomegranate plants that were classified based on pathogenicity tests using detached leaves. Using an arbitrarily primed polymerase chain reaction, we identified one primer (primer CAG) that reacted only with DNA of isolates that induced the most severe disease symptoms. Based on the sequence of the amplified fragment, we generated a specific primer (primer C) that recognizes these highly virulent isolates. Therefore, we suggest that primer C can be utilized as a molecular marker for the detection of A. alternata isolates that cause black spot disease of pomegranate.


1997 ◽  
Vol 87 (2) ◽  
pp. 203-208 ◽  
Author(s):  
D. Prusky ◽  
A. Perez ◽  
Y. Zutkhi ◽  
R. Ben-Arie

Modified atmosphere packaging (MAP) of persimmon fruit resulted in the accumulation of acetaldehyde to a level of 80 μg/ml; ethanol to a level of 900 μg/ml; and CO2 up to 30%. When fruits were stored at -1°C for 4 months in such atmospheres, the incidence of black spot disease, caused by Alternaria alternata, was reduced. The effects of each of these gases were examined to determine their individual involvement in the inhibition of Alternaria development during storage. When A. alternata, grown at 20°C on potato dextrose agar or inoculated in persimmon fruit, was exposed for 24 h to different levels of each volatile, acetaldehyde was the most fungistatic but only at concentrations higher than those that accumulated under MAP; CO2 was moderately inhibitory at concentrations from 10 to 60%, whereas ethanol had no effect. Similar inhibitory effects were obtained with acetaldehyde at 620 μg/ml or 30% CO2 when in vitro cultures of A. alternata and infected fruits were exposed for up to 2 weeks at 20°C, but 1,000 μg of ethanol per ml had only a transitory inhibitory effect under these conditions. Based on analysis of the effect of concentration versus time for each gas accumulating in MAP, we suggest that the increasing concentration of CO2 during storage is the principal factor in the inhibition of black spot disease development.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 197
Author(s):  
Tao Wang ◽  
Miao Chi ◽  
Ling Guo ◽  
Donghuan Liu ◽  
Yu Yang ◽  
...  

Root-associated endophytic fungi (RAF) are found asymptomatically in almost all plant groups. However, little is known about the compositions and potential functions of RAF communities associated with most Orchidaceae species. In this study, the diversity of RAF was examined in four wild epiphytic orchids, Acampe rigida, Doritis pulcherrima, Renanthera coccinea, and Robiquetia succisa, that occur in southern China. A culture-independent method involving Illumina amplicon sequencing, and an in vitro culture method, were used to identify culturable fungi. The RAF community diversity differed among the orchid roots, and some fungal taxa were clearly concentrated in a certain orchid species, with more OTUs being detected. By investigating mycorrhizal associations, the results showed that 28 (about 0.8%) of the 3527 operational taxonomic units (OTUs) could be assigned as OMF, while the OTUs of non-mycorrhizal fungal were about 99.2%. Among the OMFs, Ceratobasidiaceae OTUs were the most abundant with different richness, followed by Thelephoraceae. In addition, five Ceratobasidium sp. strains were isolated from D. pulcherrima, R. succisa, and R. coccinea roots with high separation rates. These culturable Ceratobasidium strains will provide materials for host orchid conservation and for studying the mechanisms underlying mycorrhizal symbiosis.


2016 ◽  
Vol 03 (04) ◽  
Author(s):  
Yasin NA ◽  
Ahmed S ◽  
Khan WU ◽  
Ashraf Y

1994 ◽  
Vol 62 (4) ◽  
pp. 701-706 ◽  
Author(s):  
Kenji Murata ◽  
Kenichi Kitagawa ◽  
Testuo Masuda ◽  
Kosuke Inoue ◽  
Kazuo Kotobuki ◽  
...  

Mycologia ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 867-875 ◽  
Author(s):  
Akihiko Tsuneda ◽  
Shigeyuki Murakami ◽  
Warwick M. Gill ◽  
Nitaro Maekawa

Author(s):  
Atima Komhorm ◽  
Suttipong Thongmee ◽  
Todsawat Thammakun ◽  
Thanaprasong Oiuphisittraiwat ◽  
Arom Jantasorn

Sign in / Sign up

Export Citation Format

Share Document