Lepidium sativum and Its Biogenic Silver Nanoparticles Activate Immune Cells and Induce Apoptosis and Cell Cycle Arrest in HT-29 Colon Cancer Cells

2021 ◽  
Vol 11 (2) ◽  
pp. 195-209
Author(s):  
Essam H. Ibrahim ◽  
Hamed A. Ghramh ◽  
Ali Alshehri ◽  
Mona Kilany ◽  
Ahlam Khalofah ◽  
...  

There is an increased demand for plants with antioxidants and anticancer properties. Lepidium sativum L. is an edible plant with medical importance. In this study, we aimed to investigate the anticancer activity; antioxidant capacity and antibacterial impact of Lepidium sativum L. seed acetone extract (LSSAExt), alone and with its biogenic silver nanoparticles (AgNPs). LSSAExt-produced AgNPs were characterized using SEM, XRD and Vis/UV analysis. Biomolecules in LSSAExt and LSSAExt + AgNPs were explored utilizing FTIR. The ability of LSSAExt and LSSAExt + AgNPs to induce apoptosis and mitotic cell arrest in the HT-29 colon cancer cells, compared to normal and repeated cell division activated splenic cells was determined by florescent stains and flow cytometry. Antibacterial power was tested using well diffusion technique. LSSAExt and LSSAExt + AgNPs showed a good antibacterial impact. LSSAExt contains ROS, which could help in cancer cells apoptosis. LSSAExt and LSSAExt+AgNPs were not toxic to splenic cells and increased the rate of their cell division. LSSAExt and LSSAExt+AgNPs increased p53 expression and could arrest cell division of HT-29 colon cancer cells but not of normal fast dividing cells. LSSAExt and LSSAExt+AgNPs caused apoptosis in cancer cells rather than necrosis. In conclusion, acetone preparation of the edible plant L. sativum is a good antibacterial agent, good anticancer preparation at least against colon cancer as it is shown to be targeted, effective and can boost immune cells.

Author(s):  
Milena Villarini ◽  
Mattia Acito ◽  
Raffaella di Vito ◽  
Samuele Vannini ◽  
Luca Dominici ◽  
...  

(1) Background: Cynara cardunculus L. subsp. scolymus (L.) Hegi, popularly known as artichoke, is an herbaceous plant belonging to the Asteraceae family. Artichoke leaf extracts (ALEs) have been widely used in traditional medicine because of their hepatoprotective, cholagogic, hypoglycaemic, hypolipemic and antibacterial properties. ALEs are also recognized for their antioxidative and anti-inflammatory activities. In this study, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as effect on cell growth of ALEs on human colon cancer HT-29 and RKO cells. HT-29 and RKO cells exhibit a different p53 status: RKO cells express the wild-type protein, whereas HT-29 cells express a p53-R273H contact mutant. (2) Methods: Four different ALEs were obtained by sequential extraction of dried artichoke leaves; ALEs were characterized for their content in chlorogenic acid, cynaropicrin, and caffeoylquinic acids. HT-29 and RKO cells were used for in vitro testing (i.e., cytotoxicity and genotoxicity assessment, cell cycle analysis, apoptosis induction). (3) Results: Two out of the four tested ALEs showed marked effects on cell vitality toward HT-29 and RKO tumour cells. The effect was accompanied by a genotoxic activity exerted at a non-cytotoxic concentrations, by a significant perturbation of cell cycle (i.e., with increase of cells in the sub-G1 phase), and by the induction of apoptosis. (4) Conclusions: ALEs rich in cynaropicrin, caffeoylquinic acids, and chlorogenic acid showed to be capable of affecting HT-29 and RKO colon cancer cells by inducing favourable biological effects: cell cycle perturbation, activation of mitochondrial dependent pathway of apoptosis, and the induction of genotoxic effects probably mediated by the induction of apoptosis. Taken together, these results weigh in favour of a potential cancer chemotherapeutic activity of ALEs.


2016 ◽  
Vol 65 (31) ◽  
pp. 6477-6487 ◽  
Author(s):  
María-Carmen López de las Hazas ◽  
Juana I. Mosele ◽  
Alba Macià ◽  
Iziar A. Ludwig ◽  
María-José Motilva

2010 ◽  
Vol 24 (6) ◽  
pp. 1546-1553 ◽  
Author(s):  
Hiroe Go ◽  
Hye-Jung Hwang ◽  
Taek-Jeong Nam

RSC Advances ◽  
2017 ◽  
Vol 7 (61) ◽  
pp. 38257-38263 ◽  
Author(s):  
Fatemeh Hajiaghaalipour ◽  
Elham Bagheri ◽  
Fadhil Lafta Faraj ◽  
Mahmood Ameen Abdulla ◽  
Nazia Abdul Majid

DBID compound induced LDH leakage in HT-29 cells when compared to untreated cells.


Sign in / Sign up

Export Citation Format

Share Document