Simulated Annealing with a Hybrid Local Search for Solving the Traveling Salesman Problem

2015 ◽  
Vol 12 (7) ◽  
pp. 1165-1169 ◽  
Author(s):  
Dongming Zhao ◽  
Wei Xiong ◽  
Zongyu Shu
2019 ◽  
Vol 9 (19) ◽  
pp. 3985
Author(s):  
Lahari Sengupta ◽  
Radu Mariescu-Istodor ◽  
Pasi Fränti

The traveling salesman problem (TSP) has been widely studied for the classical closed-loop variant. However, very little attention has been paid to the open-loop variant. Most of the existing studies also focus merely on presenting the overall optimization results (gap) or focus on processing time, but do not reveal much about which operators are more efficient to achieve the result. In this paper, we present two new operators (link swap and 3–permute) and study their efficiency against existing operators, both analytically and experimentally. Results show that while 2-opt and relocate contribute equally in the closed-loop case, the situation changes dramatically in the open-loop case where the new operator, link swap, dominates the search; it contributes by 50% to all improvements, while 2-opt and relocate have a 25% share each. The results are also generalized to tabu search and simulated annealing.


Information ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 7 ◽  
Author(s):  
Ai-Hua Zhou ◽  
Li-Peng Zhu ◽  
Bin Hu ◽  
Song Deng ◽  
Yan Song ◽  
...  

The traveling-salesman problem can be regarded as an NP-hard problem. To better solve the best solution, many heuristic algorithms, such as simulated annealing, ant-colony optimization, tabu search, and genetic algorithm, were used. However, these algorithms either are easy to fall into local optimization or have low or poor convergence performance. This paper proposes a new algorithm based on simulated annealing and gene-expression programming to better solve the problem. In the algorithm, we use simulated annealing to increase the diversity of the Gene Expression Programming (GEP) population and improve the ability of global search. The comparative experiments results, using six benchmark instances, show that the proposed algorithm outperforms other well-known heuristic algorithms in terms of the best solution, the worst solution, the running time of the algorithm, the rate of difference between the best solution and the known optimal solution, and the convergent speed of algorithms.


2020 ◽  
Author(s):  
Meng Luo ◽  
Shiliang Gu

<p>In this paper, a novel search algorithm that based on the Contraction-Expansion algorithm and integrated three operators Exchange, Move, and Flip (EMF-CE) is proposed for the traveling salesman problem (TSP). EMF-CE uses a negative exponent function to generate critical value as the feedback regulation of algorithm implementation. Also, combined Exchange Step, Move step with Flip step and constitute of more than twenty combinatorial optimizations of program elements. It has been shown that the integration of local search operators can significantly improve the performance of EMF-CE for TSPs. We test small and medium scale (51-1000 cities) TSPs were taken from the TSPLIB online library. The experimental results show the efficiency of the proposed EMF-CE for addressing TSPs compared to other state-of-the-art algorithms.</p>


2018 ◽  
Vol 25 (1) ◽  
pp. 48
Author(s):  
Emerson Bezerra De Carvalho ◽  
Elizabeth Ferreira Gouvêa Goldbarg ◽  
Marco Cesar Goldbarg

The Lin and Kernighan’s algorithm for the single objective Traveling Salesman Problem (TSP) is one of the most efficient heuristics for the symmetric case. Although many algorithms for the TSP were extended to the multi-objective version of the problem (MTSP), the Lin and Kernighan’s algorithm was still not fully explored. Works that applied the Lin and Kernighan’s algorithm for the MTSP were driven to weighted sum versions of the problem. We investigate the LK from a Pareto dominance perspective. The multi-objective LK was implemented within two local search schemes and applied to 2 to 4-objective instances. The results  showed that the proposed algorithmic variants obtained better results than a state-of-the-art algorithm.


Sign in / Sign up

Export Citation Format

Share Document