Object Recognition Using Deep Learning

2019 ◽  
Vol 16 (9) ◽  
pp. 4044-4052 ◽  
Author(s):  
Rohini Goel ◽  
Avinash Sharma ◽  
Rajiv Kapoor

The deep learning approaches have drawn much focus of the researchers in the area of object recognition because of their implicit strength of conquering the shortcomings of classical approaches dependent on hand crafted features. In the last few years, the deep learning techniques have been made many developments in object recognition. This paper indicates some recent and efficient deep learning frameworks for object recognition. The up to date study on recently developed a deep neural network based object recognition methods is presented. The various benchmark datasets that are used for performance evaluation are also discussed. The applications of the object recognition approach for specific types of objects (like faces, buildings, plants etc.) are also highlighted. We conclude up with the merits and demerits of existing methods and future scope in this area.

Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


2020 ◽  
Author(s):  
Hamid Hassanpour

This is a paper regarding application of deep neural network in prediction of Forex market. It utilized advanced deep learning techniques and software package in order ti evaluate capability of deep neural network in market behavior prediction.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 15
Author(s):  
Manuel Gil-Martín ◽  
Marcos Sánchez-Hernández ◽  
Rubén San-Segundo

Deep learning techniques are being widely applied to Human Activity Recognition (HAR). This paper describes the implementation and evaluation of a HAR system for daily life activities using the accelerometer of an iPhone 6S. This system is based on a deep neural network including convolutional layers for feature extraction from accelerations and fully-connected layers for classification. Different transformations have been applied to the acceleration signals in order to find the appropriate input data to the deep neural network. This study has used acceleration recordings from the MotionSense dataset, where 24 subjects performed 6 activities: walking downstairs, walking upstairs, sitting, standing, walking and jogging. The evaluation has been performed using a subject-wise cross-validation: recordings from the same subject do not appear in training and testing sets at the same time. The proposed system has obtained a 9% improvement in accuracy compared to the baseline system based on Support Vector Machines. The best results have been obtained using raw data as input to a deep neural network composed of two convolutional and two max-pooling layers with decreasing kernel sizes. Results suggest that using the module of the Fourier transform as inputs provides better results when classifying only between dynamic activities.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


2021 ◽  
Author(s):  
Sara Saleh Alfozan ◽  
Mohamad Mahdi Hassan

Infection of agricultural plants is a serious threat to food safety. It can severely damage plants' yielding capacity. Farmers are the primary victims of this threat. Due to the advancement of AI, image-based intelligent apps can play a vital role in mitigating this threat by quick and early detection of plants infections. In this paper, we present a mobile app in this regard. We have developed MajraDoc to detect some common diseases in local agricultural plants. We have created a dataset of 10886 images for ten classes of plants diseases to train the deep neural network. The VGG-19 network model was modified and trained using transfer learning techniques. The model achieved high accuracy, and the application performed well in predicting all ten classes of infections.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yirui Wu ◽  
Dabao Wei ◽  
Jun Feng

With the development of the fifth-generation networks and artificial intelligence technologies, new threats and challenges have emerged to wireless communication system, especially in cybersecurity. In this paper, we offer a review on attack detection methods involving strength of deep learning techniques. Specifically, we firstly summarize fundamental problems of network security and attack detection and introduce several successful related applications using deep learning structure. On the basis of categorization on deep learning methods, we pay special attention to attack detection methods built on different kinds of architectures, such as autoencoders, generative adversarial network, recurrent neural network, and convolutional neural network. Afterwards, we present some benchmark datasets with descriptions and compare the performance of representing approaches to show the current working state of attack detection methods with deep learning structures. Finally, we summarize this paper and discuss some ways to improve the performance of attack detection under thoughts of utilizing deep learning structures.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Vol 21 (3) ◽  
pp. 175-188
Author(s):  
Sumaiya Thaseen Ikram ◽  
Aswani Kumar Cherukuri ◽  
Babu Poorva ◽  
Pamidi Sai Ushasree ◽  
Yishuo Zhang ◽  
...  

Abstract Intrusion Detection Systems (IDSs) utilise deep learning techniques to identify intrusions with maximum accuracy and reduce false alarm rates. The feature extraction is also automated in these techniques. In this paper, an ensemble of different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked to build a robust anomaly detection model. The performance of the ensemble model is analysed on different datasets, namely UNSW-NB15 and a campus generated dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of VIT_SPARC20 is categorised by the deep learning models without decrypting its contents, thus preserving the confidentiality and integrity of the data transmitted. XGBoost integrates the results of each deep learning model to achieve higher accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of accuracy, precision and recall are 99.4%. 98% and 97%, respectively.


Sign in / Sign up

Export Citation Format

Share Document