Chitosan Oligosaccharide Lactate-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Synthesis, In Vitro Cytotoxicity, and Relaxometric Properties

2021 ◽  
Vol 21 (8) ◽  
pp. 4145-4150
Author(s):  
Mohammad Yaseen Ahmad ◽  
Md. Wasi Ahmad ◽  
Huan Yue ◽  
Son Long Ho ◽  
Hyunsil Cha ◽  
...  

In this study, hydrophilic and biocompatible chitosan oligosaccharide lactate (COL)-coated ultra-small gadolinium oxide nanoparticles (NPs) were synthesized through a one-pot polyol method and characterized by various experimental techniques. The In Vitro cellular cytotoxicity assay indicated that the COL-coated gadolinium oxide NPs were non-toxic up to 500 μM Gd. In addition, their water proton spin relaxivities (i.e., r1 and r2) were estimated to be 13.0 and 27.0 s−1mM−1, respectively, which are higher than those of commercial magnetic resonance imaging (MRI) contrast agents. The application potential of the solution sample as a T1 MRI contrast agent was demonstrated In Vitro by measuring map images in which dose-dependent contrast enhancements were observed.

2020 ◽  
Vol 13 (10) ◽  
pp. 312
Author(s):  
Huan Yue ◽  
Ji Ae Park ◽  
Son Long Ho ◽  
Mohammad Yaseen Ahmad ◽  
Hyunsil Cha ◽  
...  

Nanoparticles are considered potential candidates for a new class of magnetic resonance imaging (MRI) contrast agents. Negative MRI contrast agents require high magnetic moments. However, if nanoparticles can exclusively induce transverse water proton spin relaxation with negligible induction of longitudinal water proton spin relaxation, they may provide negative contrast MR images despite having low magnetic moments, thus acting as an efficient T2 MRI contrast agent. In this study, carbon-coated paramagnetic dysprosium oxide (DYO@C) nanoparticles (core = DYO = DyxOy; shell = carbon) were synthesized to explore their potential as an efficient T2 MRI contrast agent at 3.0 T MR field. Since the core DYO nanoparticles have an appreciable (but not high) magnetic moment that arises from fast 4f-electrons of Dy(III) (6H15/2), the DYO@C nanoparticles exhibited an appreciable transverse water proton spin relaxivity (r2) with a negligible longitudinal water proton spin relaxivity (r1). Consequently, they acted as a very efficient T2 MRI contrast agent, as proven from negative contrast enhancements seen in the in vivo T2 MR images.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


RSC Advances ◽  
2018 ◽  
Vol 8 (26) ◽  
pp. 14694-14704 ◽  
Author(s):  
N. Kostevšek ◽  
S. Hudoklin ◽  
M. E. Kreft ◽  
I. Serša ◽  
A. Sepe ◽  
...  

Study of magnetic interactions revealed optimal size and morphology of Fe–Pt nanoparticles. Novel biocompatible hydrocaffeic acid coating was used to prepare highly efficient and safe MRI contrast agent, which was proven by in vitro study.


2016 ◽  
Vol 7 ◽  
pp. 1086-1103 ◽  
Author(s):  
Nikodem Kuźnik ◽  
Mateusz Michał Tomczyk

Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories.


Nanoscale ◽  
2014 ◽  
Vol 6 (16) ◽  
pp. 9646-9654 ◽  
Author(s):  
Daniel Nordmeyer ◽  
Patrick Stumpf ◽  
Dominic Gröger ◽  
Andreas Hofmann ◽  
Sven Enders ◽  
...  

Superparamagnetic iron oxide nanoparticles with a dendritic polyglycerol (dPG) sulfate strongly bind to L- and P-selectin. Shielding of leukocytes reduces cell extravasation and binding to endothelial cells indicate inflammation specificity and thus, applicability as selective MRI contrast agent.


2016 ◽  
Vol 113 (37) ◽  
pp. E5464-E5471 ◽  
Author(s):  
M. Veronica Clavijo Jordan ◽  
Su-Tang Lo ◽  
Shiuhwei Chen ◽  
Christian Preihs ◽  
Sara Chirayil ◽  
...  

Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.


Sign in / Sign up

Export Citation Format

Share Document