scholarly journals New Class of Efficient T2 Magnetic Resonance Imaging Contrast Agent: Carbon-Coated Paramagnetic Dysprosium Oxide Nanoparticles

2020 ◽  
Vol 13 (10) ◽  
pp. 312
Author(s):  
Huan Yue ◽  
Ji Ae Park ◽  
Son Long Ho ◽  
Mohammad Yaseen Ahmad ◽  
Hyunsil Cha ◽  
...  

Nanoparticles are considered potential candidates for a new class of magnetic resonance imaging (MRI) contrast agents. Negative MRI contrast agents require high magnetic moments. However, if nanoparticles can exclusively induce transverse water proton spin relaxation with negligible induction of longitudinal water proton spin relaxation, they may provide negative contrast MR images despite having low magnetic moments, thus acting as an efficient T2 MRI contrast agent. In this study, carbon-coated paramagnetic dysprosium oxide (DYO@C) nanoparticles (core = DYO = DyxOy; shell = carbon) were synthesized to explore their potential as an efficient T2 MRI contrast agent at 3.0 T MR field. Since the core DYO nanoparticles have an appreciable (but not high) magnetic moment that arises from fast 4f-electrons of Dy(III) (6H15/2), the DYO@C nanoparticles exhibited an appreciable transverse water proton spin relaxivity (r2) with a negligible longitudinal water proton spin relaxivity (r1). Consequently, they acted as a very efficient T2 MRI contrast agent, as proven from negative contrast enhancements seen in the in vivo T2 MR images.

2021 ◽  
Vol 21 (8) ◽  
pp. 4145-4150
Author(s):  
Mohammad Yaseen Ahmad ◽  
Md. Wasi Ahmad ◽  
Huan Yue ◽  
Son Long Ho ◽  
Hyunsil Cha ◽  
...  

In this study, hydrophilic and biocompatible chitosan oligosaccharide lactate (COL)-coated ultra-small gadolinium oxide nanoparticles (NPs) were synthesized through a one-pot polyol method and characterized by various experimental techniques. The In Vitro cellular cytotoxicity assay indicated that the COL-coated gadolinium oxide NPs were non-toxic up to 500 μM Gd. In addition, their water proton spin relaxivities (i.e., r1 and r2) were estimated to be 13.0 and 27.0 s−1mM−1, respectively, which are higher than those of commercial magnetic resonance imaging (MRI) contrast agents. The application potential of the solution sample as a T1 MRI contrast agent was demonstrated In Vitro by measuring map images in which dose-dependent contrast enhancements were observed.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


RSC Advances ◽  
2021 ◽  
Vol 11 (51) ◽  
pp. 32216-32226
Author(s):  
Ramesh Marasini ◽  
Sagar Rayamajhi ◽  
Anthony Moreno-Sanchez ◽  
Santosh Aryal

In pursuit of safer alternatives to Gd-based MRI contrast agents due to its toxicity and organ deposition, herein, we developed a safer and efficient clinically relevant iron(iii) chelated polymeric nanoparticle as a T1-weighted MRI contrast agent.


2020 ◽  
Vol 13 (10) ◽  
pp. 296
Author(s):  
Friederike Reeßing ◽  
Sèvrin E. M. Huijsse ◽  
Rudi A. J. O. Dierckx ◽  
Ben L. Feringa ◽  
Ronald J.H. Borra ◽  
...  

Thanks to its innocuousness and high spatiotemporal resolution, light is used in several established and emerging applications in biomedicine. Among them is the modulation of magnetic resonance imaging (MRI) contrast agents’ relaxivity with the aim to increase the sensitivity, selectivity and amount of functional information obtained from this outstanding whole-body medical imaging technique. This approach requires the development of molecular contrast agents that show high relaxivity and strongly pronounced photo-responsiveness. To this end, we report here the design and synthesis of a light-activated MRI contrast agent, together with its evaluation using UV–vis spectroscopy, Fast Field Cycling (FFC) relaxometry and relaxometric measurements on clinical MRI scanners. The high relaxivity of the reported agent changes substantially upon irradiation with light, showing a 17% decrease in relaxivity at 0.23T upon irradiation with λ = 400 nm (violet) light for 60 min. On clinical MRI scanners (1.5T and 3.0T), irradiation leads to a decrease in relaxivity of 9% and 19% after 3 and 60 min, respectively. The molecular design presents an important blueprint for the development of light-activatable MRI contrast agents.


2016 ◽  
Vol 7 (7) ◽  
pp. 4230-4236 ◽  
Author(s):  
Lyndsay M. Randolph ◽  
Clare L. M. LeGuyader ◽  
Michael E. Hahn ◽  
Christopher M. Andolina ◽  
Joseph P. Patterson ◽  
...  

A Gd3+-coordinated polymerizable analogue of the MRI contrast agent Gd-DOTA was used to prepare amphiphilic block copolymers, with hydrophilic blocks composed entirely of the polymerized contrast agent.


2017 ◽  
Vol 41 (7) ◽  
pp. 2735-2744 ◽  
Author(s):  
Abhishek Gupta ◽  
Liliana de Campo ◽  
Lynne J. Waddington ◽  
Robert B. Knott ◽  
Dennis Hwang ◽  
...  

A novel paramagnetic amphiphile designed to form nanoassemblies of highly ordered nanostructures was explored as an advanced MRI contrast agent.


2015 ◽  
Vol 3 (11) ◽  
pp. 2241-2276 ◽  
Author(s):  
Erwin Peng ◽  
Fenghe Wang ◽  
Jun Min Xue

The development of water-soluble nanostructured magnetic nanocomposites based on hydrophobic magnetic nanoparticle assemblies using an organic functional coating for MRI contrast agent applications was discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (22) ◽  
pp. 17223-17227 ◽  
Author(s):  
M. Ravichandran ◽  
Goldie Oza ◽  
S. Velumani ◽  
Jose Tapia Ramirez ◽  
Francisco Garcia-Sierra ◽  
...  

A novel, one-step synthesis of one-dimensional cobalt ferrite nanowhiskers (CfW) is reported.


2021 ◽  
Vol 11 (17) ◽  
pp. 8222
Author(s):  
Shanti Marasini ◽  
Huan Yue ◽  
Adibehalsadat Ghazanfari ◽  
Son Long Ho ◽  
Ji Ae Park ◽  
...  

Surface-coating polymers contribute to nanoparticle-based magnetic resonance imaging (MRI) contrast agents because they can affect the relaxometric properties of the nanoparticles. In this study, polyaspartic acid (PASA)-coated ultrasmall Gd2O3 nanoparticles with an average particle diameter of 2.0 nm were synthesized using the one-pot polyol method. The synthesized nanoparticles exhibited r1 and r2 of 19.1 and = 53.7 s−1mM−1, respectively, (r1 and r2 are longitudinal and transverse water–proton spin relaxivities, respectively) at 3.0 T MR field, approximately 5 and 10 times higher than those of commercial Gd-chelate contrast agents, respectively. The T1 and T2 MR images could be obtained due to an appreciable r2/r1 ratio of 2.80, indicating their potential as a dual-modal T1 and T2 MRI contrast agent.


Author(s):  
Yanhui Zhang ◽  
Hailu Zhang ◽  
Dehua Huang ◽  
Bo Tan ◽  
Chengxing Zhang ◽  
...  

Naphthalene is coupled with DOTA via a peptide sequence to yield an amphipathic MRI probe Nap-CFGKTG-DOTA-Gd (Nap-Gd) that can self-assemble into nanofibers. Incubation of NSCs, hMSCs and L929 cells in...


Sign in / Sign up

Export Citation Format

Share Document