Luminescence Properties of InGaN/GaN Green Light-Emitting Diodes with Si-Doped Graded Short-Period Superlattice

2021 ◽  
Vol 21 (11) ◽  
pp. 5648-5652
Author(s):  
ll-Wook Cho ◽  
Bom Lee ◽  
Kwanjae Lee ◽  
Jin Soo Kim ◽  
Mee-Yi Ryu

The optical properties of InGaN/GaN green light-emitting diodes (LEDs) with an undoped graded short-period superlattice (GSL) and a Si-doped GSL (SiGSL) were investigated using photoluminescence (PL) and time-resolved PL spectroscopies. For comparison, an InGaN/GaN conventional LED (CLED) without the GSL structure was also grown. The SiGSL sample showed the strongest PL intensity and the largest PL peak energy because of band-filling effect and weakened quantum- confined stark effect (QCSE). PL decay time of SiGSL sample at 10 K was shorter than those of the CLED and GSL samples. This finding was attributed to the oscillator strength enhancement by the reduced QCSE due to the Coulomb screening by Si donors. In addition, the SiGSL sample exhibited the longest decay time at 300 K, which was ascribed to the reduced defect and dislocation density. These results indicate that insertion of the Si-doped GSL structure is an effective strategy for improving the optical properties in InGaN/GaN green LEDs.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Bing Xu ◽  
Hai Tao Dai ◽  
Shu Guo Wang ◽  
Fu-Chuan Chu ◽  
Chou-Hsiung Huang ◽  
...  

We investigated the effects of pre-TMIn treatment on the optical properties of green light emitting diodes (LEDs). Although pre-TMIn treatment did not affect the epitaxial structure of quantum wells, it significantly improved the quality of the surface morphology relative to that of the untreated sample. Indium cluster can be seen by high-resolution transmission electron microscopy (HR-TEM), which is the explanation for the red-shift of photoluminescence (PL). Time-resolved photoluminescence measurements indicated that the sample prepared with pre-TMIn treatment had a shorter radiative decay time. As a result, the light output power of the treated green LED was higher than that of the conventional untreated one. Thus, pre-TMIn treatment appears to be a simple and efficient means of improving the performance of green LEDs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3134
Author(s):  
Jianfei Li ◽  
Duo Chen ◽  
Kuilong Li ◽  
Qiang Wang ◽  
Mengyao Shi ◽  
...  

GaN-based green light-emitting diodes (LEDs) with different thicknesses of the low-temperature (LT) p-GaN layer between the last GaN barriers and p-AlGaN electron blocking layer were characterized by photoluminescence (PL) and electroluminescence (EL) spectroscopic methods in the temperature range of 6–300 K and injection current range of 0.01–350 mA. Based on the results, we suggest that a 20 nm-thick LT p-GaN layer can effectively prevent indium (In) re-evaporation, improve the quantum-confined Stark effect in the last quantum well (QW) of the active region, and finally reduce the efficiency droop by about 7%.


2007 ◽  
Vol 17 (01) ◽  
pp. 81-84
Author(s):  
J. Senawiratne ◽  
M. Zhu ◽  
W. Zhao ◽  
Y. Xia ◽  
Y. Li ◽  
...  

Optical properties of green emission Ga 0.80 In 0.20 N/GaN multi-quantum well and light emitting diode have been investigated by using photoluminescence, cathodoluminescence, electroluminescence, and photoconductivity. The temperature dependent photoluminescence and cathodoluminescence studies show three emission bands including GaInN/GaN quantum well emission centered at 2.38 eV (~ 520 nm). The activation energy of the non-radiative recombination centers was found to be ~ 60 meV. The comparison of photoconductivity with luminescence spectroscopy revealed that optical properties of quantum well layers are strongly affected by the quantum-confined Stark effect.


Sign in / Sign up

Export Citation Format

Share Document