Non-Uniform Heat Source/Sink and Multiple Slips on 3D Magnetic-Casson Fluid in a Suspension of Copper Nanoparticles Over a Porous Slendering Sheet

2018 ◽  
Vol 7 (3) ◽  
pp. 469-477 ◽  
Author(s):  
K. R. Sekhar ◽  
G. V. Reddy ◽  
C. S. K. Raju ◽  
S. A. Shehzad
Author(s):  
Chalavadi Sulochana ◽  
Samrat S. Payad ◽  
Naramgari Sandeep

This study deals with the three-dimensional magnetohydrodynamic Casson fluid flow, heat and mass transfer over a stretching surface in the presence of non-uniform heat source/sink, thermal radiation and Soret effects. The governing partial differential equations are transformed to nonlinear ordinary differential equations by using similarity transformation, which are then solved numerically using Runge-Kutta based shooting technique. We obtained good accuracy of the present results by comparing with the exited literature. The influence of dimensionless parameters on velocity, temperature and concentration profiles along with the friction factor, local Nusselt and Sherwood numbers are discussed with the help of graphs and tables. It is found that the positive values of non-uniform heat source/sink parameters acts like heat generators and helps to develop the temperature profiles of the flow.


2015 ◽  
Vol 12 (2) ◽  
pp. 125-136 ◽  
Author(s):  
D. Mythili ◽  
R. Sivaraj ◽  
M. M. Rashidi ◽  
Z. Yang

The present investigation deals with the study of unsteady, free convective Casson fluid flow over a vertical cone saturated with porous medium in the presence of non-uniform heat source/sink, high order chemical reaction and cross diffusion effects. The numerical computation for the governing equations has been performed using an implicit finite difference method of Crank-Nicolson type. The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically and the physical aspects are discussed in detail. Results indicate that temperature dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that high order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.


2017 ◽  
Vol 11 ◽  
pp. 182-190
Author(s):  
Gauri Shenkar Seth ◽  
Rohit Sharma ◽  
B. Kumbhakar ◽  
R. Tripathi

An investigation is carried out for the steady, two dimensional stagnation point flow of a viscous, incompressible, electrically conducting, optically thick heat radiating fluid taking viscous dissipation into account over an exponentially stretching non-isothermal sheet with exponentially moving free-stream in the presence of uniform transverse magnetic field and non-uniform heat source/sink. The governing boundary layer equations are transformed into highly nonlinear ordinary differential equations using suitable similarity transform. Resulting boundary value problem is solved numerically with the help of 4th-order Runge-Kutta Gill method along with shooting technique. Effects of various pertinent flow parameters on the velocity, temperature field, skin friction and Nusselt number are described through figures and tables. Also, the present numerical results are compared with the earlier published results for some reduced case and a good agreement has been found among those results.


Sign in / Sign up

Export Citation Format

Share Document