scholarly journals Transcranial magnetic stimulation (TMS) reveals the content of post-perceputal visual processing.

2004 ◽  
Vol 4 (8) ◽  
pp. 47-47 ◽  
Author(s):  
D.-A. Wu ◽  
S. Shimojo
2018 ◽  
Vol 30 (10) ◽  
pp. 1517-1531 ◽  
Author(s):  
Paolo A. Grasso ◽  
Elisabetta Làdavas ◽  
Caterina Bertini ◽  
Serena Caltabiano ◽  
Gregor Thut ◽  
...  

Motion information can reach V5/MT through two parallel routes: one conveying information at early latencies through a direct subcortical route and the other reaching V5 later via recurrent projections through V1. Here, we tested the hypothesis that input via the faster direct pathway depends on motion characteristics. To this end, we presented motion stimuli to healthy human observers at different velocities (4.4°/sec vs. 23°/sec) with static stimuli as controls while applying transcranial magnetic stimulation (TMS) pulses over V5 or V1. We probed for TMS interference with objective (two-alternative forced choice [2AFC]) and subjective (awareness) measures of motion processing at six TMS delays from stimulus onset (poststimulus window covered: ∼27–160 msec). Our results for V5–TMS showed earlier interference with objective performance for fast motion (53.3 msec) than slow motion (80 msec) stimuli. Importantly, TMS-induced decreases in objective measures of motion processing did correlate with decreases in subjective measures for slow but not fast motion stimuli. Moreover, V1–TMS induced a temporally unspecific interference with visual processing as it impaired the processing of both motion and static stimuli at the same delays. These results are in accordance with fast moving stimuli reaching V5 through a different route than slow moving stimuli. The differential latencies and coupling to awareness suggest distinct involvement of a direct (i.e., colliculo-extrastriate) connection bypassing V1 depending on stimulus velocity (fast vs. slow). Implication of a direct pathway in the early processing of fast motion may have evolved through its behavioral relevance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marissa Grande ◽  
Lucas Lattanzio ◽  
Isabelle Buard ◽  
Allison M. McKendrick ◽  
Yu Man Chan ◽  
...  

Background: Visual Snow (VS) syndrome is believed to be due to aberrant central visual processing. Positron Emission Tomography (PET) brain imaging and visual evoked potential studies provide evidence for excessive neuronal activity in the medial temporal lobe, specifically the lingual gyrus, and suggest the VS syndrome is a hyperexcitability syndrome. These data provide the basis for consideration of repetitive transcranial magnetic stimulation (rTMS) as a potential treatment for the VS syndrome.Objective: To publish the study protocol for a pilot study underway at the University of Colorado School of Medicine to investigate the use of rTMS intervention to improve symptoms and visual dysfunction associated with VS. The study aims to determine the adverse events and drop-out rate, evaluate performance of outcome measures, including a novel VS symptom scale, and describe changes in outcomes associated with treatment.Methods and Design: Up to 10 participants meeting criteria for VS syndrome, age 19–65 years, will undergo an open-label intervention consisting of 10 rTMS sessions, occurring 5 days a week over a 2-week period. Participants will complete pre-treatment and post-treatment assessments that include: the Colorado Visual Snow Scale (CVSS), the National Eye Institute Visual Functional Questionnaire—25 (VFQ-25), the General Anxiety Disorder—7 scale (GAD-7), and three psychophysical visual processing tasks.Discussion: Knowledge gained from this pilot study will inform future study planning and provide valuable lessons for future investigation of rTMS for the VS syndrome. An overview of study proceedings thus far demonstrates recruitment challenges associated with the COVID-19 pandemic, and additional challenges that are unique to the VS syndrome and to treatment schedules associated with TMS.Registration: This study has been approved by the Colorado Multiple Institutional Review Board. ClinicalTrials.gov Identifier: NCT04925232.


2020 ◽  
Author(s):  
Olga Lucia Gamboa Arana ◽  
Hannah Palmer ◽  
Moritz Dannhauer ◽  
Connor Hile ◽  
Sicong Liu ◽  
...  

AbstractDespite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the underlying mechanisms-of-actions that mediate modulatory effects remain poorly understood. To fill this gap, we studied dose–response functions of TMS for modulation of visual processing. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task. During participants’ first visit, motion coherence thresholds, 64-channel visual evoked potentials (VEPs), and TMS resting motor thresholds (RMT) were measured. In second and third visits, single pulse TMS was delivered 30 ms before the onset of motion or at the onset latency of the N2 VEP component derived from the first session. TMS was delivered at 0%, 80%, 100%, or 120% of RMT over the site of N2 peak activity, or at 120% over vertex. Behavioral results demonstrated a significant main effect of TMS timing on accuracy, with better performance when TMS was applied at N2-Onset timing versus Pre-Onset, as well as a significant interaction, indicating that 80% intensity produced higher accuracy than other conditions. TMS effects on VEPs showed reduced amplitudes in the 80% Pre-Onset condition, an increase for the 120% N2-Onset condition, and monotonic amplitude scaling with stimulation intensity. The N2 component was not affected by TMS. These findings reveal dose–response relationships between intensity and timing of TMS on visual perception and electrophysiological brain activity, generally indicating greater facilitation at stimulation intensities below RMT.


Sign in / Sign up

Export Citation Format

Share Document