scholarly journals Brain activity evoked by motion direction changes and by global motion coherence shows different spatial distributions

2010 ◽  
Vol 8 (6) ◽  
pp. 674-674 ◽  
Author(s):  
O. Braddick ◽  
J. Wattam-Bell ◽  
D. Birtles ◽  
J. Loesch ◽  
L. Loesch ◽  
...  
Cephalalgia ◽  
2011 ◽  
Vol 31 (11) ◽  
pp. 1199-1210 ◽  
Author(s):  
Kathryn E Webster ◽  
J Edwin Dickinson ◽  
Josephine Battista ◽  
Allison M McKendrick ◽  
David R Badcock

Aim: This study aimed to revisit previous findings of superior processing of motion direction in migraineurs with a more stringent direction discrimination task and to investigate whether increased internal noise can account for motion processing deficits in migraineurs. Methods: Groups of 13 migraineurs (4 with aura, 9 without aura) and 15 headache-free controls completed three psychophysical tasks: one detecting coherence in a motion stimulus, one discriminating the spiral angle in a glass pattern and another discriminating the spiral angle in a global-motion task. Internal noise estimates were obtained for all tasks using an N-pass method. Results: Consistent with previous research, migraineurs had higher motion coherence thresholds than controls. However, there were no significant performance differences on the spiral global-motion and global-form tasks. There was no significant group difference in internal noise estimates associated with any of the tasks. Conclusions: The results from this study suggest that variation in internal noise levels is not the mechanism driving motion coherence threshold differences in migraine. Rather, we argue that motion processing deficits may result from cortical changes leading to less efficient extraction of global-motion signals from noise.


2019 ◽  
Author(s):  
Dragan Rangelov ◽  
Rebecca West ◽  
Jason B. Mattingley

AbstractMany decisions, from crossing a busy street to choosing a profession, require integration of discrete sensory events. Previous studies have shown that integrative decision-making favours more reliable stimuli, mimicking statistically optimal integration. It remains unclear, however, whether reliability biases are automatic or strategic. To address this issue, we asked observers to reproduce the average motion direction of two suprathreshold coherent motion signals, presented successively and varying in reliability. Although unbiased responses were both optimal and possible by virtue of task rules and suprathreshold motion coherence, we found robust behavioural biases favouring the more reliable stimulus. Using population-tuning modelling of brain activity recorded using electroencephalography, we characterised tuning to the average motion direction. In keeping with the behavioural biases, the tuning profiles also exhibited reliability biases. Taken together, our findings reveal that temporal integration of discrete sensory events is automatically and sub-optimally weighted according to stimulus reliability.


Cephalalgia ◽  
2006 ◽  
Vol 26 (9) ◽  
pp. 1131-1136 ◽  
Author(s):  
AM McKendrick ◽  
DR Badcock ◽  
JC Badcock ◽  
M Gurgone

Migraine groups have impaired ability to identify global motion direction in noisy random dot stimuli, an observation that has been used as evidence for cortical hyperexcitability. Several studies have also suggested abnormalities in cognitive processing, particularly in the domains of attention, visuo-spatial processing and memory. This study aimed to determine whether poor performance by migraineurs in motion coherence tasks could be explained by non-visual cognitive factors such as attention. Twenty-nine migraineurs and 27 non-headache controls participated. Global motion coherence thresholds were measured along with measures of neuropsychological function, using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The migraine group had significantly higher motion coherence thresholds than controls. No significant difference in attention or any other RBANS index score was found between groups. Index scores did not correlate with motion perception thresholds. This study does not support inattention or other cognitive abnormality as an explanation for motion perception anomalies in migraine.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Kensuke Kiriishi ◽  
Hirokazu Doi ◽  
Nobuaki Magata ◽  
Tetsuro Torisu ◽  
Mihoko Tanaka ◽  
...  

2021 ◽  
Author(s):  
Giulio Matteucci ◽  
Benedetta Zattera ◽  
Rosilari Bellacosa Marotti ◽  
Davide Zoccolan

AbstractComputing global motion direction of extended visual objects is a hallmark of primate high-level vision. Although neurons selective for global motion have also been found in mouse visual cortex, it remains unknown whether rodents can combine multiple motion signals into global, integrated percepts. To address this question, we trained two groups of rats to discriminate either gratings (G group) or plaids (i.e., superpositions of gratings with different orientations; P group) drifting horizontally along opposite directions. After the animals learned the task, we applied a visual priming paradigm, where presentation of the target stimulus was preceded by the brief presentation of either a grating or a plaid. The extent to which rat responses to the targets were biased by such prime stimuli provided a measure of the spontaneous, perceived similarity between primes and targets. We found that gratings and plaids, when uses as primes, were equally effective at biasing the perception of plaid direction for the rats of the P group. Conversely, for G group, only the gratings acted as effective prime stimuli, while the plaids failed to alter the perception of grating direction. To interpret these observations, we simulated a decision neuron reading out the representations of gratings and plaids, as conveyed by populations of either component or pattern cells (i.e., local or global motion detectors). We concluded that the findings for the P group are highly consistent with the existence of a population of pattern cells, playing a functional role similar to that demonstrated in primates. We also explored different scenarios that could explain the failure of the plaid stimuli to elicit a sizable priming magnitude for the G group. These simulations yielded testable predictions about the properties of motion representations in rodent visual cortex at the single-cell and circuitry level, thus paving the way to future neurophysiology experiments.


2019 ◽  
Vol 6 (3) ◽  
pp. 190114
Author(s):  
William Curran ◽  
Lee Beattie ◽  
Delfina Bilello ◽  
Laura A. Coulter ◽  
Jade A. Currie ◽  
...  

Prior experience influences visual perception. For example, extended viewing of a moving stimulus results in the misperception of a subsequent stimulus's motion direction—the direction after-effect (DAE). There has been an ongoing debate regarding the locus of the neural mechanisms underlying the DAE. We know the mechanisms are cortical, but there is uncertainty about where in the visual cortex they are located—at relatively early local motion processing stages, or at later global motion stages. We used a unikinetic plaid as an adapting stimulus, then measured the DAE experienced with a drifting random dot test stimulus. A unikinetic plaid comprises a static grating superimposed on a drifting grating of a different orientation. Observers cannot see the true motion direction of the moving component; instead they see pattern motion running parallel to the static component. The pattern motion of unikinetic plaids is encoded at the global processing level—specifically, in cortical areas MT and MST—and the local motion component is encoded earlier. We measured the direction after-effect as a function of the plaid's local and pattern motion directions. The DAE was induced by the plaid's pattern motion, but not by its component motion. This points to the neural mechanisms underlying the DAE being located at the global motion processing level, and no earlier than area MT.


2011 ◽  
Vol 28 (3) ◽  
pp. 239-246 ◽  
Author(s):  
SOPHIE M. WUERGER ◽  
ALEXA RUPPERTSBERG ◽  
STEPHANIE MALEK ◽  
MARCO BERTAMINI ◽  
JASNA MARTINOVIC

AbstractGlobal motion integration mechanisms can utilize signals defined by purely chromatic information. Is global motion integration sensitive to the polarity of such color signals? To answer this question, we employed isoluminant random dot kinematograms (RDKs) that contain a single chromatic contrast polarity or two different polarities. Single-polarity RDKs consisted of local motion signals with either a positive or a negative S or L–M component, while in the different-polarity RDKs, half the dots had a positive S or L–M component, and the other half had a negative S or L–M component. In all RDKs, the polarity and the motion direction of the local signals were uncorrelated. Observers discriminated between 50% coherent motion and random motion, and contrast thresholds were obtained for 81% correct responses. Contrast thresholds were obtained for three different dot densities (50, 100, and 200 dots). We report two main findings: (1) dependence on dot density is similar for both contrast polarities (+S vs. −S, +LM vs. −LM) but slightly steeper for S in comparison to LM and (2) thresholds for different-polarity RDKs are significantly higher than for single-polarity RDKs, which is inconsistent with a polarity-blind integration mechanism. We conclude that early motion integration mechanisms are sensitive to the polarity of the local motion signals and do not automatically integrate information across different polarities.


Cephalalgia ◽  
2006 ◽  
Vol 26 (8) ◽  
pp. 949-959 ◽  
Author(s):  
AM McKendrick ◽  
A Turpin ◽  
S Webb ◽  
DR Badcock

Some migraineurs have increased thresholds for the detection of global dot motion. We investigated whether migraineurs show consequential abnormalities in the determination of direction of self-motion (heading) from simulated optic flow. The ability to determine heading from optic flow is likely to be necessary for optimal determination of self-motion through the environment. Twenty-five migraineurs and 25 controls participated. Global dot motion coherence thresholds were assessed, in addition to performance on two simulated heading tasks: one with a symmetrical flow field, and the second with differing velocity of optic flow on the left and right sides of the participant. While some migraineurs demonstrated abnormal global motion coherence thresholds, there was no difference in performance on the heading tasks at either simulated walking (5 km/h) or driving (50 km/h) speeds. Increased global motion coherence thresholds in migraineurs do not result in abnormal judgements of heading from 100± coherent optic flow.


2020 ◽  
Author(s):  
Zhiyan Wang ◽  
Masako Tamaki ◽  
Kazuhisa Shibata ◽  
Michael S. Worden ◽  
Takashi Yamada ◽  
...  

AbstractWhile numerous studies have shown that visual perceptual learning (VPL) occurs as a result of exposure to a visual feature in a task-irrelevant manner, the underlying neural mechanism is poorly understood. In a previous psychophysical study, subjects were repeatedly exposed to a task-irrelevant global motion display that induced the perception of not only the local motions but also a global motion moving in the direction of the spatiotemporal average of the local motion vectors. As a result, subjects enhanced their sensitivity only to the local moving directions, suggesting that early visual areas (V1/V2) that process local motions are involved in task-irrelevant VPL. However, this hypothesis has never been examined by directly examining the involvement of early visual areas (V1/V2). Here, we employed a decoded neurofeedback technique (DecNef) using functional magnetic resonance imaging. During the DecNef training, subjects were trained to induce the activity patterns in V1/V2 that were similar to those evoked by the actual presentation of the global motion display. The DecNef training was conducted with neither the actual presentation of the display nor the subjects’ awareness of the purpose of the experiment. As a result, subjects increased the sensitivity to the local motion directions but not specifically to the global motion direction. The training effect was strictly confined to V1/V2. Moreover, subjects reported that they neither perceived nor imagined any motion during the DecNef training. These results together suggest that that V1/V2 are sufficient for exposure-based task-irrelevant VPL to occur unconsciously.Significance StatementWhile numerous studies have shown that visual perceptual learning (VPL) occurs as a result of exposure to a visual feature in a task-irrelevant manner, the underlying neural mechanism is poorly understood. Previous psychophysical experiments suggest that early visual areas (V1/V2) are involved in task-irrelevant VPL. However, this hypothesis has never been examined by directly examining the involvement of early visual areas (V1/V2). Here, using decoded fMRI neurofeedback, the activity patterns similar to those evoked by the presentation of a complex motion display were repeatedly induced only in early visual areas. The training sensitized only the local motion directions and not the global motion direction, suggesting that V1/V2 are involved in task-irrelevant VPL.


i-Perception ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 204166952096110
Author(s):  
Chien-Chung Chen ◽  
Hiroshi Ashida ◽  
Xirui Yang ◽  
Pei-Yin Chen

In a stimulus with multiple moving elements, an observer may perceive that the whole stimulus moves in unison if (a) one can associate an element in one frame with one in the next (correspondence) and (b) a sufficient proportion of correspondences signal a similar motion direction (coherence). We tested the necessity of these two conditions by asking the participants to rate the perceived intensity of linear, concentric, and radial motions for three types of stimuli: (a) random walk motion, in which the direction of each dot was randomly determined for each frame, (b) random image sequence, which was a set of uncorrelated random dot images presented in sequence, and (c) global motion, in which 35% of dots moved coherently. The participants perceived global motion not only in the global motion conditions but also in the random image sequences, though not in random walk motion. The type of perceived motion in the random image sequences depends on the spatial context of the stimuli. Thus, although there is neither a fixed correspondence across different frames nor a coherent motion direction, observers can still perceive global motion in the random image sequence. This result cannot be explained by motion energy or local aperture border effects.


Sign in / Sign up

Export Citation Format

Share Document