Saliency in a perceptually suppressed image determines the spatial origin of a perceptual alternation during binocular rivalry

2010 ◽  
Vol 9 (8) ◽  
pp. 293-293
Author(s):  
S. Stuit ◽  
C. Paffen ◽  
F. Verstraten
2009 ◽  
Vol 20 (9) ◽  
pp. 1084-1091 ◽  
Author(s):  
Sang Wook Hong ◽  
Steven K. Shevell

How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.


2008 ◽  
Vol 25 (3) ◽  
pp. 361-364 ◽  
Author(s):  
SANG WOOK HONG ◽  
STEVEN K. SHEVELL

An open question in color rivalry is whether alternation between two colors is caused by a difference in receptoral stimulation or a difference in the neural representation of color appearance. This question was examined with binocular rivalry between physically identical lights that differed in appearance due to chromatic induction. Perceptual alternation was measured between gratings of the same chromaticity; each one was presented within a different patterned surround that caused the gratings, one to each eye, to appear unequal in hue because of chromatic induction. The gratings were presented dichoptically with binocular disparity so the rivalrous gratings appeared in front of the surround. Perceptual alternation in hue was found for the two physically identical chromaticities. Stereoscopic depth also was perceived, corroborating binocular neural combination despite color rivalry (Treisman, 1962). The results show that color rivalry is resolved after color-appearance shifts caused by chromatic context, and that color rivalry does not require competing unequal cone excitations from the rivalrous stimuli.


2009 ◽  
Vol 05 (01) ◽  
pp. 123-134 ◽  
Author(s):  
YUTA KAKIMOTO ◽  
KAZUYUKI AIHARA

Binocular rivalry is perceptual alternation that occurs when different visual images are presented to each eye. Despite the intensive studies, the mechanism of binocular rivalry still remains unclear. In multistable binocular rivalry, which is a special case of binocular rivalry, it is known that the perceptual alternation between paired patterns is more frequent than that between unpaired patterns. This result suggests that perceptual transition in binocular rivalry is not a simple random process, and the memories stored in the brain can play an important role in the perceptual transition. In this study, we propose a hierarchical chaotic neural network model for multistable binocular rivalry and show that our model reproduces some characteristic features observed in multistable binocular rivalry.


2010 ◽  
Vol 32 (9) ◽  
pp. 1432-1442 ◽  
Author(s):  
Juliane Britz ◽  
Michael A. Pitts ◽  
Christoph M. Michel

2012 ◽  
Vol 24 (1) ◽  
pp. 246-259 ◽  
Author(s):  
Rachel N. Denison ◽  
Michael A. Silver

During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: (1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy or (2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of interocular switch rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment.


2020 ◽  
Author(s):  
Mireia Torralba ◽  
Alice Drew ◽  
Alba Sabaté San José ◽  
Luis Morís Fernández ◽  
Salvador Soto-Faraco

AbstractEndogenous brain processes play a paramount role in shaping up perceptual phenomenology, as illustrated by the alternations experienced by humans (and other animals) when watching perceptually ambiguous, static images. Here, we hypothesised that endogenous alpha fluctuations in the visual cortex pace the accumulation of sensory information leading to perceptual outcomes. We addressed this hypothesis using binocular rivalry combined with visual entrainment and electroencephalography in humans (42 female, 40 male). The results revealed a correlation between the individual frequency of alpha oscillations in the occipital cortex and perceptual alternation rates experienced during binocular rivalry. In subsequent experiments we show that regulating endogenous brain activity via entrainment produced corresponding changes in perceptual alternation rate, which were observed only in the alpha range but not at lower entrainment frequencies. Overall, rhythmic alpha stimulation resulted in faster perceptual alternation rates, compared to arrhythmic or no stimulation. These findings support the notion that visual information is accumulated via alpha cycles to promote the emergence of conscious perceptual representations. We suggest that models of binocular rivalry incorporating posterior alpha as a pacemaker can provide an important advance in the comprehension of the dynamics of visual awareness.Significance statementMainstream theories in cognitive neuroscience agree that endogenous brain processes play a paramount role in shaping our perceptual experience of sensory inputs. In vision, endogenous fluctuations in the alpha rhythm have been pointed out to regulate visual inputs to perception. In support of this hypothesis, here we used EEG recordings and visual entrainment to demonstrate that inter-individual differences in the speed of endogenous alpha fluctuations in the brain are causally related to the accrual of visual information to awareness. These findings provide, for the first time, evidence for alpha-gated regulation of the dynamics of alternations in conscious visual perception.


Perception ◽  
10.1068/p5245 ◽  
2005 ◽  
Vol 34 (7) ◽  
pp. 803-822 ◽  
Author(s):  
Ryota Kanai ◽  
Farshad Moradi ◽  
Shinsuke Shimojo ◽  
Frans A J Verstraten

When our visual system is confronted with ambiguous stimuli, the perceptual interpretation spontaneously alternates between the competing incompatible interpretations. The timing of such perceptual alternations is highly stochastic and the underlying neural mechanisms are poorly understood. We show that perceptual alternations can be triggered by a transient stimulus presented nearby. The induction was tested for four types of bistable stimuli: structure-from-motion, binocular rivalry, Necker cube, and ambiguous apparent motion. While underlying mechanisms may vary among them, a transient flash induced time-locked perceptual alternations in all cases. The effect showed a dependence on the adaptation to the dominant percept prior to the presentation of a flash. These perceptual alternations show many similarities to perceptual disappearances induced by transient stimuli (Kanai and Kamitani, 2003 Journal of Cognitive Neuroscience15 664–672; Moradi and Shimojo, 2004 Vision Research44 449–460). Mechanisms linking these two transient-induced phenomena are discussed.


Emotion ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1199-1207 ◽  
Author(s):  
Timo Stein ◽  
Caitlyn Grubb ◽  
Maria Bertrand ◽  
Seh Min Suh ◽  
Sara C. Verosky

2014 ◽  
Vol 1 ◽  
pp. 739-742
Author(s):  
Tetsuya Shimokawa ◽  
Kenji Leibnitz ◽  
Ferdinand Peper

Sign in / Sign up

Export Citation Format

Share Document