scholarly journals Abnormal Eye Position Signals in Interstitial Nucleus of Cajal in Monkeys With “A” Pattern Strabismus

2019 ◽  
Vol 60 (12) ◽  
pp. 3970 ◽  
Author(s):  
Adam Pallus ◽  
Michael Mustari ◽  
Mark M. G. Walton

1998 ◽  
Vol 80 (6) ◽  
pp. 3100-3111 ◽  
Author(s):  
Y. Dalezios ◽  
C. A. Scudder ◽  
S. M. Highstein ◽  
A. K. Moschovakis

Dalezios, Y., C. A. Scudder, S. M. Highstein, and A. K. Moschovakis. Anatomy and physiology of the primate interstitial nucleus of Cajal. II. Discharge pattern of single efferent fibers. J. Neurophysiol. 80: 3100–3111, 1998. Single efferent fibers of the interstitial nucleus of Cajal (NIC) were characterized physiologically and injected with biocytin in alert behaving monkeys. Quantitative analysis demonstrated that their discharge encodes a constellation of oculomotor variables. Tonic and phasic signals were related to vertical (up or down) eye position and saccades, respectively. Depending on how they encoded eye position, saccade velocity, saccade size, saccade duration, and smooth-pursuit eye velocity, fibers were characterized as regular or irregular, bi- or unidirectionally modulated, more or less sensitive, and reliable or unreliable. Further, fibers that did not burst for saccades (tonic) and fibers the eye-position and saccade-related signals of which increased in the same (in-phase) or in the opposite (anti-phase) directions were encountered. A continuum of discharge properties was the rule. We conclude that NIC efferent fibers send a combination of eye-position, saccade-, and smooth-pursuit-related signals, mixed in proportions that differ for different fibers, to targets of the vertical neural integrator such as extraocular motoneurons.



2000 ◽  
Vol 83 (4) ◽  
pp. 2080-2092 ◽  
Author(s):  
M. Missal ◽  
S. de Brouwer ◽  
P. Lefèvre ◽  
E. Olivier

The activity of vertical burst neurons (BNs) was recorded in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF-BNs) and in the interstitial nucleus of Cajal (NIC-BNs) in head-restrained cats while performing saccades or smooth pursuit. BNs emitted a high-frequency burst of action potentials before and during vertical saccades. On average, these bursts led saccade onset by 14 ± 4 ms (mean ± SD, n = 23), and this value was in the range of latencies (∼5–15 ms) of medium-lead burst neurons (MLBNs). All NIC-BNs ( n = 15) had a downward preferred direction, whereas riMLF-BNs showed either a downward ( n = 3) or an upward ( n = 5) preferred direction. We found significant correlations between saccade and burst parameters in all BNs: vertical amplitude was correlated with the number of spikes, maximum vertical velocity with maximum of the spike density, and saccade duration with burst duration. A correlation was also found between instantaneous vertical velocity and neuronal activity during saccades. During fixation, all riMLF-BNs and ∼50% of NIC-BNs (7/15) were silent. Among NIC-BNs active during fixation (8/15), only two cells had an activity correlated with the eye position in the orbit. During smooth pursuit, most riMLF-BNs were silent (7/8), but all NIC-BNs showed an activity that was significantly correlated with the eye velocity. This activity was unaltered during temporary disappearance of the visual target, demonstrating that it was not visual in origin. For a given neuron, its on-direction during smooth pursuit and saccades remained identical. The activity of NIC-BNs during both saccades and smooth pursuit can be described by a nonlinear exponential function using the velocity of the eye as independent variable. We suggest that riMLF-BNs, which were not active during smooth pursuit, are vertical MLBNs responsible for the generation of vertical saccades. Because NIC-BNs discharged during both saccades and pursuit, they cannot be regarded as MLBNs as usually defined. NIC-BNs could, however, be the site of convergence of both the saccadic and smooth pursuit signals at the premotoneuronal level. Alternatively, NIC-BNs could participate in the integration of eye velocity to eye position signals and represent input neurons to a common integrator.



2007 ◽  
Vol 97 (3) ◽  
pp. 2322-2338 ◽  
Author(s):  
Farshad Farshadmanesh ◽  
Eliana M. Klier ◽  
Pengfei Chang ◽  
Hongying Wang ◽  
J. Douglas Crawford

The interstitial nucleus of Cajal (INC) is thought to be the “neural integrator” for torsional/vertical eye position and head posture. Here, we investigated the coordination of eye and head movements after reversible INC inactivation. Three-dimensional (3-D) eye–head movements were recorded in three head-unrestrained monkeys using search coils. INC sites were identified by unit recording/electrical stimulation and then reversibly inactivated by 0.3 μl of 0.05% muscimol injection into 26 INC sites. After muscimol injection, the eye and head 1) began to drift (an inability to maintain stable fixation) torsionally: clockwise (CW)/counterclockwise (CCW) after left/right INC inactivation respectively. 2) The eye and head tilted torsionally CW/CCW after left/right INC inactivation, respectively. Horizontal gaze/head drifts were inconsistently present and did not result in considerable position offsets. Vertical eye drift was dependent on both vertical eye position and the magnitude of the previous vertical saccade, as in head-fixed condition. This correlation was smaller for gaze and head drift, suggesting that the gaze and head deficits could not be explained by a first-order integrator model. Ocular counterroll (OC) was completely disrupted. The gain of torsional vestibuloocular reflex (VOR) during spontaneous eye and head movements was reduced by 22% in both CW/CCW directions after either left or right INC inactivation. Our results suggest a complex interdependence of eye and head deficits after INC inactivation during fixation, gaze shifts, and VOR. Some of our results resemble the symptoms of spasmodic torticollis (ST).



1998 ◽  
Vol 79 (2) ◽  
pp. 835-847 ◽  
Author(s):  
Chris R. S. Kaneko ◽  
Kikuro Fukushima

Kaneko, Chris R. S. and Kikuro Fukushima. Discharge characteristics of vestibular saccade neurons in alert monkeys. J. Neurophysiol. 79: 835–847, 1998. We previously described a class of neurons, located in and around the interstitial nucleus of Cajal of the cat, that discharged during vestibular stimulation and before saccades. We called these neurons vestibular saccade neurons (VSNs). In the present study, we characterized similar neurons in the monkey. These neurons discharged before vertical saccades and during vertical vestibular stimulation as well as vertical smooth pursuit. Like cat VSNs, the discharge metrics of these VSNs were poorly related to saccade metrics and showed only occasional, weak sensitivity to eye position. They discharged most intensely (on-direction) for movements that were either upward or downward, and their on-directions were consistent during pitch and pursuit but not for eye position. For saccades, the correlation coefficient of number of spikes and vertical saccade size varied from 0.08 to 0.90 with a mean of ∼0.6. The average sensitivity (i.e., slope) of the number of spikes and vertical saccade size linear regression was 0.3 ± 0.2 spike/deg. Average correlations between peak discharge rate and peak saccade velocity and between burst duration and saccade duration were 0.5 and 0.4; sensitivities were 0.2 ± 0.2 spike per s per deg/s and 0.6 ± 0.5 ms/ms, respectively. Average vestibular sensitivities during 0.5 Hz, ±10° sinusoidal pitch while the animals suppressed their vestibular ocular reflex were 0.97 spike/s per deg/s for up VSNs and 0.66 spike/s per deg/s for down VSNs. The average static position sensitivity for the population of 39 VSNs tested was 0.55 spike/s per deg. The average gain for VSNs tested during 0.5 Hz, ±10° sinusoidal smooth pursuit tracking was 1.4 spike/s per deg/s. As we could not identify analogous neurons in the region of the monkey ponto-medullary junction, we conclude that horizontal on-direction VSNs do not exist in the monkey. We discuss a possible functional role for VSNs and similar neurons described in previous studies and conclude that these neurons are most likely involved with the process of neural integration (in a mathematical sense) of velocity-coded inputs from a variety of oculomotor subsystems and are not a pivotal element in saccade generation.



Science ◽  
1991 ◽  
Vol 252 (5012) ◽  
pp. 1551-1553 ◽  
Author(s):  
J. Crawford ◽  
W. Cadera ◽  
T. Vilis


2001 ◽  
Vol 121 (541) ◽  
pp. 105-107 ◽  
Author(s):  
Stefan Glasauer, Marianne Dieterich, Thoma


2019 ◽  
Vol 45 (10) ◽  
pp. 1910-1921 ◽  
Author(s):  
Samuel Salvaggio ◽  
Nicolas Masson ◽  
Michael Andres


Author(s):  
Seok Lee ◽  
Juyong Park ◽  
Dongkyung Nam

In this article, the authors present an image processing method to reduce three-dimensional (3D) crosstalk for eye-tracking-based 3D display. Specifically, they considered 3D pixel crosstalk and offset crosstalk and applied different approaches based on its characteristics. For 3D pixel crosstalk which depends on the viewer’s relative location, they proposed output pixel value weighting scheme based on viewer’s eye position, and for offset crosstalk they subtracted luminance of crosstalk components according to the measured display crosstalk level in advance. By simulations and experiments using the 3D display prototypes, the authors evaluated the effectiveness of proposed method.



Sign in / Sign up

Export Citation Format

Share Document