scholarly journals Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis

JCI Insight ◽  
2020 ◽  
Vol 5 (12) ◽  
Author(s):  
Andrea Fava ◽  
Jill Buyon ◽  
Chandra Mohan ◽  
Ting Zhang ◽  
H. Michael Belmont ◽  
...  
2020 ◽  
Author(s):  
Andrea Fava ◽  
Jill Buyon ◽  
Chandra Mohan ◽  
Ting Zhang ◽  
H. Michael Belmont ◽  
...  

AbstractLupus nephritis, one of the most serious manifestations of systemic lupus erythematosus (SLE), has both a heterogeneous clinical and pathological presentation. For example, proliferative nephritis identifies a more aggressive disease class that requires immunosuppression. However, the current classification system relies on the static appearance of histopathological morphology which does not capture differences in the inflammatory response. Therefore, a biomarker grounded in the disease biology is needed to understand the molecular heterogeneity of lupus nephritis and identify immunologic mechanism and pathways. Here, we analyzed the patterns of 1000 urine protein biomarkers in 30 patients with active lupus nephritis. We found that patients stratify over a chemokine gradient inducible by interferon-gamma. Higher values identified patients with proliferative lupus nephritis. After integrating the urine proteomics with the single-cell transcriptomics of kidney biopsies, it was observed that the urinary chemokines defining the gradient were predominantly produced by infiltrating CD8 T cells, along with natural killer and myeloid cells. The urine chemokine gradient significantly correlated with the number of kidney-infiltrating CD8 cells. These findings suggest that urine proteomics can capture the complex biology of the kidney in lupus nephritis. Patient-specific pathways may be noninvasively tracked in the urine in real time, enabling diagnosis and personalized treatment.


2021 ◽  
Author(s):  
Andrea Fava ◽  
Deepak A. Rao ◽  
Chandra Mohan ◽  
Ting Zhang ◽  
Avi Rosenberg ◽  
...  

BIOspektrum ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 274-276
Author(s):  
Morgan S. Sobol ◽  
Anne-Kristin Kaster

AbstractSingle cell genomics (SCG) can provide reliable context for assembled genome fragments on the level of individual prokaryotic genomes and has rapidly emerged as an essential complement to cultivation-based and metagenomics research approaches. Targeted cell sorting approaches, which enable the selection of specific taxa by fluorescent labeling, compatible with subsequent single cell genomics offers an opportunity to access genetic information from rare biosphere members which would have otherwise stayed hidden as microbial dark matter.


PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17769 ◽  
Author(s):  
Emily J. Fleming ◽  
Amy E. Langdon ◽  
Manuel Martinez-Garcia ◽  
Ramunas Stepanauskas ◽  
Nicole J. Poulton ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A161-A161
Author(s):  
Diana DeLucia ◽  
Tiffany Pariva ◽  
Roland Strong ◽  
Owen Witte ◽  
John Lee

BackgroundIn advanced prostate cancer (PCa), progression to castration-resistant PCa (CRPC) is inevitable and novel therapies for CRPC are needed. Adoptive transfer of T cells targeting tumor antigens is a promising approach in the cancer field. Unfortunately, identifying antigens expressed exclusively in prostate tumor cells has been challenging. Since the prostate is not an essential organ, we alternatively selected prostate-restricted epithelial antigens (PREAs) expressed in both malignant and normal prostate tissue for transgenic T cell studies.MethodsRNA-seq data sets identifying genes enriched in PCa were cross-referenced with the NIH Genotype-Expression database to identify PREAs. Using a novel molecular immunology approach, select PREAs and major histocompatibility complex class I (MHC-I) molecules were co-expressed in HEK293F cells, from which MHC–peptide complexes were efficiently isolated. Peptides were eluted and sequenced by mass spectrometry. Peptide–MHC binding was validated with a T2 stabilization assay and peptide immunodominance was determined using an interferon-γ (IFN-γ) ELISpot assay following stimulation of healthy HLA-A2+ peripheral blood mononuclear cells (PBMC) with peptide pools. Following peptide stimulation, CD8+ T cells with peptide-specific T cell receptors (TCR) were enriched by peptide–MHC-I dextramer labeling and fluorescence activated cell sorting for single cell TCR α/β chain sequencing.ResultsWe identified 11 A2+ peptides (8 previously unpublished) from prostatic acid phosphatase (ACPP), solute carrier family 45 member 3 (SLC45A3), and NK3 homeobox 1 (NKX3.1) that bound to HLA-A2 with varying affinities. Extended culture stimulation of PBMC with peptide pools from each PREA, compared to the standard overnight culture, revealed a greater number of IFN-γ producing cells overall and a greater breadth of response across all the peptides. Antigen specific CD8+ T cells were detectable at low frequencies in both male and female healthy PBMC for 7 of the 11 peptides. Dextramer-sorted antigen-specific cells were used for single-cell paired TCR αβ sequencing and transgenic T cell development.ConclusionsThrough this work we identified HLA-A2-presented antigenic peptides from the PREAs ACPP, SLC45A3, and NKX3.1 that can induce the expansion of IFN-γ producing CD8+ T cells. Through peptide–MHC-I dextramer labeling, we isolated PREA-specific CD8+ T cells and characterized TCR αβ sequences with potential anti-tumor functionality. Our results highlight a rapid and directed platform for the development of MHC-I-restricted transgenic CD8+ T cells targeting lineage-specific proteins expressed in prostate epithelia for adoptive therapy of advanced PCa.


Sign in / Sign up

Export Citation Format

Share Document