scholarly journals Remote Sounding of Multilayer Cirrus Cloud Systems Using AVHRR Data Collected during FIRE-II-IFO

1998 ◽  
Vol 37 (3) ◽  
pp. 241-254 ◽  
Author(s):  
S. C. Ou ◽  
K. N. Liou ◽  
T. R. Caudill

Abstract Surface observations show that multilayer clouds frequently occur in frontal areas where cirrus clouds overlie boundary layer convective clouds or stratus clouds. In this paper, an algorithm is presented for the retrieval of cirrus cloud optical depths and ice crystal sizes in multilayer cloud systems based on the theory of radiative transfer and parameterizations. For the validation of the retrieval program, AVHRR data is analyzed for two dates during FIRE-II-IFO in which cirrus clouds overlie a layer of low stratus cloud. It is shown that the domain-averaged retrieved cloud temperatures are within the boundaries of cirrus clouds determined from the collocated replicator, radar, and lidar data. The retrieved ice crystal mean effective sizes and optical depths are also in general agreement with the values determined from the balloon-borne replicator and 2D probe data.

2010 ◽  
Vol 10 (12) ◽  
pp. 5449-5474 ◽  
Author(s):  
M. Wang ◽  
J. E. Penner

Abstract. A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.


2003 ◽  
Vol 3 (2) ◽  
pp. 1415-1451 ◽  
Author(s):  
B. Kärcher ◽  
J. Ström

Abstract. The probability of occurrence of ice crystal number densities in young cirrus clouds is examined based on airborne measurements. The observations have been carried out at midlatitudes in both hemispheres at equivalent latitudes (~52–55° N/S) during the same season (local autumn in 2000). The in situ measurements considered in the present study include temperatures, vertical velocities, and ice crystal concentrations, the latter determined with high precision and accuracy using a counterflow virtual impactor. Most young cirrus clouds typically contain high number densities (1–10 cm−3) of small (diameter <20 μm) ice crystals. This mode dominates the probability distributions in both hemispheres and is shown to be caused by rapid cooling rates associated with updraft speeds in the range 10–100 cm s-1. A second mode containing larger crystals extends from ~1 cm−3 to low concentrations close to the detection threshold (~3×104cm−3) and is associated with lower updraft speeds. Results of a statistical analysis provide compelling evidence that the dynamical variability of vertical air motions on the mesoscale is the key factor determining the observed probability distributions of pristine ice crystal concentrations in cirrus. Other factors considered are variations of temperature as well as size, number, and ice nucleation thresholds of the freezing aerosol particles. The variability in vertical velocities is likely caused by atmospheric waves. Inasmuch as gravity waves are widespread, mesoscale variability in vertical velocities can be viewed as a universa  feature of young cirrus clouds. Large-scale models that do not account for this subgrid-scale variability yield erroneous predictions of the variability of basic cirrus cloud properties. Climate change may bring about changes in the global distribution of updraft speeds, mean air temperatures, and aerosol properties. As shown in this work, these changes could significantly modify the probability distribution of cirrus ice crystal concentrations. This study emphasizes the key role of vertical velocities and mesoscale variability in vertical velocities in controlling cirrus properties. The results suggest that, in any effort to ascribe cause to trends of cirrus cloud properties, a careful evaluation of dynamical changes in cloud formation should be done before conclusions regarding the role of other anthropogenic factors, such as changes in aerosol composition, are made.


1995 ◽  
Vol 34 (2) ◽  
pp. 482-499 ◽  
Author(s):  
N. X. Rao ◽  
S. C. Ou ◽  
K. N. Liou

Abstract A numerical scheme has been developed to remove the solar component in the Advanced Very High Resolution Radiometer (AVHRR) 3.7-µm channel for the retrieval of cirrus parameters during daytime. This method uses a number of prescribed threshold values for AVHRR channels 1 (0.63 µm), 2 (0.8 µm), 3 (3.7 µm), 4 (10.9 µm), and 5 (12 µm) to separate clear and cloudy pixels. A look-up table relating channels 1 and 3 solar reflectances is subsequently constructed based on the prescribed mean effective ice crystal sizes and satellite geometric parameters. An adding&#x96;doubling radiative transfer program has been used to generate numerical values in the construction of the look-up table. Removal of the channel 3 solar component is accomplished by using the look-up table and the measured channel 1 reflectance. The cloud retrieval scheme described in Ou et al. has been modified in connection with the removal program. The authors have applied the removal&#x96;retrieval scheme to the AVHRR global area coverage daytime data, collected during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment cirrus intensive field observation (FIRE IFO) at 2100 UTC 28 October 1986 over the Wisconsin area. Distributions of the retrieved cloud heights and optical depths are comparable to those determined from Geostationary Operational Environmental Satellite visible and IR channels data reported by Minnis et al. Morwver, verifications of the retrieved cirrus temperature and height against lidar data have been carried out using results reported from three FIRE IFO nations. The retrieved cloud heights are within 0.5 km of the measured lidar values.


2019 ◽  
Author(s):  
David Neubauer ◽  
Sylvaine Ferrachat ◽  
Colombe Siegenthaler-Le Drian ◽  
Philip Stier ◽  
Daniel G. Partridge ◽  
...  

Abstract. The global aerosol-climate model ECHAM6.3-HAM2.3 (E63H23) and the previous model versions ECHAM5.5-HAM2.0 (E55H20) and ECHAM6.1-HAM2.2 (E61H22) are evaluated using global observational datasets for clouds and precipitation. In E63H23 low cloud amount, liquid and ice water path and cloud radiative effects are more realistic than in previous model versions. E63H23 has a more physically based aerosol activation scheme, improvements in the cloud cover scheme, changes in detrainment of convective clouds, changes in the sticking efficiency for accretion of ice crystals by snow, consistent ice crystal shapes throughout the model, changes in mixed phase freezing and an inconsistency in ice crystal number concentration (ICNC) in cirrus clouds was removed. Biases that were identified in E63H23 (and in previous model versions) are a too low cloud amount in stratocumulus regions, deep convective clouds in the Atlantic and Pacific oceans form too close to the continents and there are indications that ICNCs are overestimated. Since clouds are important for effective radiative forcing due to aerosol-radiation and aerosol-cloud interactions (ERFari+aci) and equilibrium climate sensitivity (ECS), also differences in ERFari+aci and ECS between the model versions were analyzed. ERFari+aci is weaker in E63H23 (−1.0 W m−2) than in E61H22 (−1.2 W m−2) (or E55H20; −1.1 W m−2). This is caused by the weaker shortwave ERFari+aci (new aerosol activation scheme and sea salt emission parameterization in E63H23, more realistic simulation of cloud water) overcompensating the weaker longwave ERFari+aci (removal of an inconsistency in ICNC in cirrus clouds in E61H22). The decrease in ECS in E63H23 (2.5 K) compared to E61H22 (2.8 K) is due to changes in the entrainment rate for shallow convection (affecting the cloud amount feedback) and a stronger cloud phase feedback.


2019 ◽  
Vol 12 (8) ◽  
pp. 3609-3639 ◽  
Author(s):  
David Neubauer ◽  
Sylvaine Ferrachat ◽  
Colombe Siegenthaler-Le Drian ◽  
Philip Stier ◽  
Daniel G. Partridge ◽  
...  

Abstract. The global aerosol–climate model ECHAM6.3–HAM2.3 (E63H23) as well as the previous model versions ECHAM5.5–HAM2.0 (E55H20) and ECHAM6.1–HAM2.2 (E61H22) are evaluated using global observational datasets for clouds and precipitation. In E63H23, the amount of low clouds, the liquid and ice water path, and cloud radiative effects are more realistic than in previous model versions. E63H23 has a more physically based aerosol activation scheme, improvements in the cloud cover scheme, changes in the detrainment of convective clouds, changes in the sticking efficiency for the accretion of ice crystals by snow, consistent ice crystal shapes throughout the model, and changes in mixed-phase freezing; an inconsistency in ice crystal number concentration (ICNC) in cirrus clouds was also removed. Common biases in ECHAM and in E63H23 (and in previous ECHAM–HAM versions) are a cloud amount in stratocumulus regions that is too low and deep convective clouds over the Atlantic and Pacific oceans that form too close to the continents (while tropical land precipitation is underestimated). There are indications that ICNCs are overestimated in E63H23. Since clouds are important for effective radiative forcing due to aerosol–radiation and aerosol–cloud interactions (ERFari+aci) and equilibrium climate sensitivity (ECS), differences in ERFari+aci and ECS between the model versions were also analyzed. ERFari+aci is weaker in E63H23 (−1.0 W m−2) than in E61H22 (−1.2 W m−2) (or E55H20; −1.1 W m−2). This is caused by the weaker shortwave ERFari+aci (a new aerosol activation scheme and sea salt emission parameterization in E63H23, more realistic simulation of cloud water) overcompensating for the weaker longwave ERFari+aci (removal of an inconsistency in ICNC in cirrus clouds in E61H22). The decrease in ECS in E63H23 (2.5 K) compared to E61H22 (2.8 K) is due to changes in the entrainment rate for shallow convection (affecting the cloud amount feedback) and a stronger cloud phase feedback. Experiments with minimum cloud droplet number concentrations (CDNCmin) of 40 cm−3 or 10 cm−3 show that a higher value of CDNCmin reduces ERFari+aci as well as ECS in E63H23.


2009 ◽  
Vol 9 (4) ◽  
pp. 16607-16682 ◽  
Author(s):  
M. Wang ◽  
J. E. Penner

Abstract. A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented into a coupled aerosol and atmospheric circulation model to better represent both cloud fraction and subgrid-scale supersaturation in global climate models. This new scheme is able to better simulate the observed probability distribution of relative humidity than the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to affect not only high level cirrus clouds through their effect on ice crystal number concentration but also low level liquid clouds through the moistening effect of settling and evaporating ice crystals. As a result, the change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations associated with heterogeneous IN because changes in high cirrus clouds and low level liquid clouds tend to cancel. Nevertheless, the change in the net radiative flux at the top of the atmosphere due to changes in IN is still large because of changes in the greenhouse effect of water vapor caused by the changes in ice crystal number concentrations. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and radiative fluxes by an amount that is similar to that from a factor of 10 change in the heterogeneous IN number concentrations.


2007 ◽  
Vol 64 (12) ◽  
pp. 4514-4519 ◽  
Author(s):  
C. G. Schmitt ◽  
A. J. Heymsfield

Abstract Cirrus clouds in mid- and high latitudes are frequently composed of bullet rosette– and column-shaped ice crystals, which can have hollow ends. Bullet rosette–shaped ice crystals are composed of a number of bullets radiating from a central point. Research has shown that the light-scattering properties of ice particles with hollow ends are different from the scattering properties of solid ice particles. Knowledge of the frequency of occurrence of hollow particles is important to more accurately calculate the radiative properties of cirrus clouds. This note presents the results of a survey of cirrus cloud ice crystal replicas imaged from balloon-borne Formvar (polyvinyl formal) replicators. Fifty percent to 80% of the replicated bullet rosette– and column-shaped particles had hollow ends. In bullets longer than 150 μm in length, the length of the hollows of the bullets averaged 88% of the total length of the bullet. The combined length of both hollow portions of column-shaped ice crystals varied from 50% of the length of the column for 30-μm-long columns to 80% of the length of the columns longer than 200 μm. Asymmetry parameter values estimated from cirrus cloud aircraft particle size distributions are higher by 0.014 when hollow crystals are considered. This difference leads to a 2.5 W m−2 increase for hollow crystals at the surface for a 0.5 optical depth cloud, demonstrating the importance of the incorporation of hollow particle scattering characteristics into radiative transfer calculations.


2013 ◽  
Vol 6 (11) ◽  
pp. 3197-3210 ◽  
Author(s):  
E. G. Larroza ◽  
W. M. Nakaema ◽  
R. Bourayou ◽  
C. Hoareau ◽  
E. Landulfo ◽  
...  

Abstract. This paper presents a methodology to calculate lidar ratios for distinct cirrus clouds that has been developed and implemented for a site located in the Southern Hemisphere. The cirrus cloud lidar data processing aims to consider a large cloud variability and cirrus cloud monitoring through a robust retrieval process. Among cirrus features estimates for complex scenes that lidar systems can provide, we highlight cloud geometrical information and extinction-to-backscatter ratio (known as lidar ratio or LR). In general, direct information on cirrus cloud microphysics is difficult to derive because LR depends on the presence of ice crystals and their properties such as shape, size, composition and orientation of particles. An iterative process to derive a stable LR value has been proposed. One of the keys is to restrict the analysis to conditions allowing accurate multilayer events. This method uses nonparametric statistical approaches to identify stationary periods according to cloud features and variability. Measurements performed in the region of the metropolitan city of São Paulo (MSP) have been used to implement and test the methodology developed for cirrus cloud characterization. Good results are represented by examining specific cases with multilayer cirrus cloud occurrence. In addition to the geometrical parameters obtained, cirrus LR values were calculated for a single day ranging from 19 ± 01 sr to 74 ± 13 sr for 2 observed layers. This large difference in LR can indicate a mixture of ice crystal particles with different sizes and shapes in both layers of the cirrus clouds. Trajectory analyses indicate that both of these cloud layers can be associated with different air mass and should be considered as 2 distinct clouds in climatology.


Sign in / Sign up

Export Citation Format

Share Document