mesoscale variability
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 25)

H-INDEX

42
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Fredrik Jansson ◽  
Gijs van den Oord ◽  
Inti Pelupessy ◽  
Maria Chertova ◽  
Johanna H Grönqvist ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Bonaduce ◽  
Andrea Cipollone ◽  
Johnny A. Johannessen ◽  
Joanna Staneva ◽  
Roshin P. Raj ◽  
...  

The mesoscale variability in the Mediterranean Sea is investigated through eddy detection techniques. The analysis is performed over 24 years (1993–2016) considering the three-dimensional (3D) fields from an ocean re-analysis of the Mediterranean Sea (MED-REA). The objective is to achieve a fit-for-purpose assessment of the 3D mesoscale eddy field. In particular, we focus on the contribution of eddy-driven anomalies to ocean dynamics and thermodynamics. The accuracy of the method used to disclose the 3D eddy contributions is assessed against pointwise in-situ measurements and observation-based data sets. Eddy lifetimes ≥ 2 weeks are representative of the 3D mesoscale field in the basin, showing a high probability (> 60%) of occurrence in the areas of the main quasi-stationary mesoscale features. The results show a dependence of the eddy size and thickness on polarity and lifetime: anticyclonic eddies (ACE) are significantly deeper than cyclonic eddies (CE), and their size tends to increase in long-lived structures which also show a seasonal variability. Mesoscale eddies result to be a significant contribution to the ocean dynamics in the Mediterranean Sea, as they account for a large portion of the sea-surface height variability at temporal scales longer than 1 month and for the kinetic energy (50–60%) both at the surface and at depth. Looking at the contributions to ocean thermodynamics, the results exhibit the existence of typical warm (cold) cores associated with ACEs (CEs) with exceptions in the Levantine basin (e.g., Shikmona gyre) where a structure close to a mode-water ACE eddy persists with a positive salinity anomaly. In this area, eddy-induced temperature anomalies can be affected by a strong summer stratification in the surface water, displaying an opposite sign of the anomaly whether looking at the surface or at depth. The results show also that temperature anomalies driven by long-lived eddies (≥ 4 weeks) can affect up to 15–25% of the monthly variability of the upper ocean heat content in the Mediterranean basin.


Oceanology ◽  
2021 ◽  
Vol 61 (3) ◽  
pp. 319-328
Author(s):  
O. O. Trusenkova ◽  
A. G. Ostrovskii ◽  
A. Y. Lazaryuk ◽  
V. B. Lobanov

2021 ◽  
Vol 8 ◽  
Author(s):  
Rachel Eveleth ◽  
David M. Glover ◽  
Matthew C. Long ◽  
Ivan D. Lima ◽  
Alison P. Chase ◽  
...  

High-resolution ocean biophysical models are now routinely being conducted at basin and global-scale, opening opportunities to deepen our understanding of the mechanistic coupling of physical and biological processes at the mesoscale. Prior to using these models to test scientific questions, we need to assess their skill. While progress has been made in validating the mean field, little work has been done to evaluate skill of the simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-resolving coupled Community Earth System Model simulation. We compare results from satellite remote sensing and ship underway observations in the North Atlantic Ocean, where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e., the arithmetic standard deviation divided by the mean, from the two observational data sets are approximately invariant across a large range of mean chlorophyll a values from oligotrophic and winter to subpolar bloom conditions. This relationship between the chlorophyll a mesoscale variability and the mean field appears to reflect an emergent property of marine biophysics, and the high-resolution simulation does poorly in capturing this skill metric, with the model underestimating observed variability under low chlorophyll a conditions such as in the subtropics.


2021 ◽  
Author(s):  
Zerlina Hofmann ◽  
Wilken-Jon von Appen ◽  
Claudia Wekerle

<p>Atlantic Water, which is transported northward by the West Spitsbergen Current, partly recirculates (i.e. turns westward) in Fram Strait. This determines how much heat and salt reaches the Arctic Ocean, and how much joins the East Greenland Current on its southward path. We describe the Atlantic Water recirculation's location, seasonality, and mesoscale variability by analyzing the first observations from moored instruments at five latitudes in central Fram Strait, spanning a period from August 2016 to July 2018. We observe recirculation on the prime meridian at 78°50'N and 80°10'N, respectively south and north of the Molly Hole, and no recirculation further south at 78°10'N and further north at 80°50'N. At a fifth mooring location at 79°30'N, we observe some influence of the two recirculation branches. The southern recirculation is observed as a continuous westward flow that carries Atlantic Water throughout the year, though it may be subject to broadening and narrowing. It is affected by eddies in spring, likely due to the seasonality of mesoscale instability in the West Spitsbergen Current. The northern recirculation is observed solely as passing eddies on the prime meridian, which are strongest during late autumn and winter, and absent during summer. This seasonality is likely affected both by the conditions set by the West Spitsbergen Current and by the sea ice. Open ocean eddies originating from the West Spitsbergen Current interact with the sea ice edge when they subduct below the fresher, colder water. Additionally the stratification set up by sea ice presence may inhibit recirculation.</p>


2021 ◽  
Author(s):  
Olga Dymova ◽  
Sergey Demyshev ◽  
Dmitry Alekseev

<p>The aim of the work is to study the mechanisms of the Black Sea mesoscale variability based on an analysis of Lorenz energy cycles calculated from the density and currents velocity obtained by the results of three numerical experiments. An eddy-resolving z-model with a horizontal resolution of 1.6 km was used. Three experiments were carried out with different atmospheric forcing: 1) - climatic data; 2) - SKIRON data for 2011; 3) – SKIRON data for 2016. The mean current kinetic energy MKE, the eddy kinetic energy EKE, the mean available potential energy MPE, the eddy available potential energy EPE and the rates of energy conversion, generation and dissipation were considered in detail.</p><p>For all experiments the generation and dissipation rates of the MKE and EKE are close to each other, so the kinetic energy from wind dissipated inside the sea. A buoyancy work (described by the conversion between the MPE and MKE) increase the MKE. The EKE was increasing due to the energy transport from the mean current into eddies and the transport from the EPE to the EKE for all experiments. It is shown that these two energy fluxes were comparable in the experiment 1, while the ratio between of them has changed almost six times in the experiments 2 and 3. The c(MKE, EKE) prevailed in 2011, but the c(EPE, EKE) dominated in 2016.</p><p>The maps analysis of the EKE spatial distribution showed that its maximum in the climatic field was located above a continental slope and in areas of the biggest mesoscale eddies. The mesoscale variability of the climatic circulation was due to the influence of both baroclinic and barotropic instability. The zones of the EKE maximum were located in the abyssal part of the sea in the experiments 2 and 3. EKE was increasing in 2011 mainly due to the inflow from the mean current through barotropic instability. The growth of EKE in 2016 was due to conversion of EPE induced by baroclinic instability.</p><p>The difference in the EKE variability by the results of climatic and real forcing experiments is associated with the wind forcing. The contribution of the wind stress work to MKE was decreased for the experiments 2 and 3, so as a result, it was observed weakening in the mean current, intensive stream meandering and generation of mesoscale eddies not only in the coastal zones but also in the abyssal part of the sea. Thus, the Black Sea mesoscale variability is determined by barotropic instability or by the combined contribution of barotropic and baroclinic instability processes under intense wind action. The mesoscale variability is due to baroclinic instability under weak wind action.</p><p>The reported study was funded by RFBR and Government of the Sevastopol according to the research project No 18-45-920019 and the state task No. 0555-2021-0004.</p>


2020 ◽  
Vol 27 (6) ◽  
Author(s):  
B. Chapron ◽  
V. N. Kudryavtsev ◽  
F. Collard Collard ◽  
N. Rascle ◽  
A. A. Kubryakov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document