scholarly journals Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus

2009 ◽  
Vol 66 (2) ◽  
pp. 432-449 ◽  
Author(s):  
Peter Caldwell ◽  
Christopher S. Bretherton

Abstract This paper describes a series of 6-day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At all times of the day, entrainment is found to be proportional to the vertically integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated liquid water path. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.

2015 ◽  
Vol 15 (10) ◽  
pp. 5851-5871 ◽  
Author(s):  
A. H. Berner ◽  
C. S. Bretherton ◽  
R. Wood

Abstract. For the first time, a large eddy simulation (LES) coupled to a bulk aerosol scheme is used to simulate an aircraft-sampled ship track. The track was formed by the M/V Sanko Peace on 13 June 1994 in a shallow drizzling boundary layer with high winds but very low background aerosol concentrations (10 cm−3). A Lagrangian framework is used to simulate the evolution of a short segment of track as it is advected away from the ship for 8 h (a downwind distance exceeding 570 km). Using aircraft observations for initialization, good agreement is obtained between the simulated and observed features of the ambient boundary layer outside the track, including the organization of the cloud into mesoscale rolls. After 8 h, a line of aerosol is injected to start the ship track. The simulation successfully reproduces the significant albedo enhancement and suppression of drizzle observed within the track. The aerosol concentration within the track dilutes as it broadens due to turbulent mixing. A sensitivity study shows the broadening rate strongly depends on the alignment between the track and the wind-aligned boundary layer rolls, as satellite images of ship tracks suggest. Entrainment is enhanced within the simulated track, but the observed 100 m elevation of the ship track above the surrounding layer is not simulated, possibly because the LES quickly sharpens the rather weak observed inversion. Liquid water path within the simulated track increases with time even as the ambient liquid water path is decreasing. The albedo increase in the track from liquid water and cloud fraction enhancement (second indirect effect) eventually exceeds that from cloud droplet number increases (first indirect or Twomey effect). In a sensitivity study with a higher initial ambient aerosol concentration, stronger ship track aerosol source, and much weaker drizzle, there is less liquid water inside the track than outside for several hours downwind, consistent with satellite estimates for such situations. In that case, the Twomey effect dominates throughout, although, as seen in satellite images, the albedo enhancement of the track is much smaller.


2008 ◽  
Vol 65 (8) ◽  
pp. 2705-2718 ◽  
Author(s):  
Irina Sandu ◽  
Jean-Louis Brenguier ◽  
Olivier Geoffroy ◽  
Odile Thouron ◽  
Valery Masson

Abstract Recent large-eddy simulation (LES) studies of the impact of aerosol on the dynamics of nocturnal marine stratocumulus revealed that, depending on the large-scale forcings, an aerosol-induced increase of the droplet concentration can lead to either an increase or a decrease of the liquid water path, hence contrasting with the cloud thickening that is expected from a reduction of the precipitation efficiency. In this study, the aerosol impacts on cloud microphysics are examined in the context of the boundary-layer diurnal cycle using 36-h LES simulations of pristine and polluted clouds. These simulations corroborate previous findings that during nighttime aerosol-induced liquid water path changes are sensitive to the large-scale forcings via enhancement of cloud-top entrainment such that, ultimately, the liquid water path may be reduced when the free-tropospheric-entrained air is drier. During the day, however, enhanced entrainment, inhibition of drizzle evaporation below cloud base, and reduced sensible heat flux from the surface lead to a more pronounced decoupling of the boundary layer, which significantly amplifies the liquid water path reduction of the polluted clouds. At night the sign of the liquid water path difference between pristine and polluted clouds depends upon large-scale forcings, while during the day the liquid water path of polluted clouds is always smaller than the one of the pristine clouds. Suggestions are made on how observational studies could be designed for validation of these simulations.


2014 ◽  
Vol 14 (17) ◽  
pp. 24387-24439
Author(s):  
A. H. Berner ◽  
C. S. Bretherton ◽  
R. Wood

Abstract. For the first time, a large-eddy simulation (LES) coupled to a bulk aerosol scheme is used to simulate an aircraft-sampled ship track. The track was formed by the M/V Sanko Peace on 13 June 1994 in a shallow drizzling boundary layer with high winds but very low background aerosol concentrations (10 cm−3). A Lagrangian framework is used to simulate the evolution of a short segment of track as it is advected away from the ship for eight hours (a downwind distance exceeding 570 km). Using aircraft observations for initialization, good agreement is obtained between the simulated and observed features of the ambient boundary layer outside the track, including the organization of cloud into mesoscale rolls. After eight hours, a line of aerosol is injected to start the ship track. The simulation successfully reproduces the significant albedo enhancement and suppression of drizzle observed within the track. The aerosol concentration within the track dilutes as it broadens due to turbulent mixing. A sensitivity study shows the broadening rate strongly depends on the alignment between the track and the wind-aligned boundary layer rolls, as satellite images of ship tracks suggest. Entrainment is enhanced within the simulated track, but the observed 100 m elevation of the ship track above the surrounding layer is not simulated, possibly because the LES quickly sharpens the rather weak observed inversion. Liquid water path within the simulated track increases with time even as the ambient liquid water path is decreasing. The albedo increase in the track from liquid water and cloud fraction enhancement (second indirect effect) eventually exceeds that from cloud droplet number increases (first indirect or Twomey effect). In a sensitivity study with a higher initial ambient aerosol concentration, stronger ship track aerosol source, and much weaker drizzle, there is less liquid water inside the track than outside for several hours downwind, consistent with satellite estimates for such situations. In this case, the Twomey effect dominates throughout, although, as seen in satellite images, the albedo enhancement of the track is much smaller.


2015 ◽  
Vol 72 (5) ◽  
pp. 2033-2040 ◽  
Author(s):  
Mohamed S. Ghonima ◽  
Joel R. Norris ◽  
Thijs Heus ◽  
Jan Kleissl

Abstract A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.


2018 ◽  
Vol 11 (7) ◽  
pp. 4273-4289 ◽  
Author(s):  
Daniel P. Grosvenor ◽  
Odran Sourdeval ◽  
Robert Wood

Abstract. Droplet concentration (Nd) and liquid water path (LWP) retrievals from passive satellite retrievals of cloud optical depth (τ) and effective radius (re) usually assume the model of an idealized cloud in which the liquid water content (LWC) increases linearly between cloud base and cloud top (i.e. at a fixed fraction of the adiabatic LWC). Generally it is assumed that the retrieved re value is that at the top of the cloud. In reality, barring re retrieval biases due to cloud heterogeneity, the retrieved re is representative of smaller values that occur lower down in the cloud due to the vertical penetration of photons at the shortwave-infrared wavelengths used to retrieve re. This inconsistency will cause an overestimate of Nd and an underestimate of LWP (referred to here as the “penetration depth bias”), which this paper quantifies via a parameterization of the cloud top re as a function of the retrieved re and τ. Here we estimate the relative re underestimate for a range of idealized modelled adiabatic clouds using bispectral retrievals and plane-parallel radiative transfer. We find a tight relationship between gre=recloud top/reretrieved and τ and that a 1-D relationship approximates the modelled data well. Using this relationship we find that gre values and hence Nd and LWP biases are higher for the 2.1 µm channel re retrieval (re2.1) compared to the 3.7 µm one (re3.7). The theoretical bias in the retrieved Nd is very large for optically thin clouds, but rapidly reduces as cloud thickness increases. However, it remains above 20 % for τ<19.8 and τ<7.7 for re2.1 and re3.7, respectively. We also provide a parameterization of penetration depth in terms of the optical depth below cloud top (dτ) for which the retrieved re is likely to be representative. The magnitude of the Nd and LWP biases for climatological data sets is estimated globally using 1 year of daily MODIS (MODerate Imaging Spectroradiometer) data. Screening criteria are applied that are consistent with those required to help ensure accurate Nd and LWP retrievals. The results show that the SE Atlantic, SE Pacific and Californian stratocumulus regions produce fairly large overestimates due to the penetration depth bias with mean biases of 32–35 % for re2.1 and 15–17 % for re3.7. For the other stratocumulus regions examined the errors are smaller (24–28 % for re2.1 and 10–12 % for re3.7). Significant time variability in the percentage errors is also found with regional mean standard deviations of 19–37 % of the regional mean percentage error for re2.1 and 32–56 % for re3.7. This shows that it is important to apply a daily correction to Nd for the penetration depth error rather than a time–mean correction when examining daily data. We also examine the seasonal variation of the bias and find that the biases in the SE Atlantic, SE Pacific and Californian stratocumulus regions exhibit the most seasonality, with the largest errors occurring in the December, January and February (DJF) season. LWP biases are smaller in magnitude than those for Nd (−8 to −11 % for re2.1 and −3.6 to −6.1 % for re3.7). In reality, and especially for more heterogeneous clouds, the vertical penetration error will be combined with a number of other errors that affect both the re and τ, which are potentially larger and may compensate or enhance the bias due to vertical penetration depth. Therefore caution is required when applying the bias corrections; we suggest that they are only used for more homogeneous clouds.


2010 ◽  
Vol 10 (21) ◽  
pp. 10541-10559 ◽  
Author(s):  
S. J. Abel ◽  
D. N. Walters ◽  
G. Allen

Abstract. Observations in the subtropical southeast Pacific obtained during the VOCALS-REx field experiment are used to evaluate the representation of stratocumulus cloud in the Met Office forecast model and to identify key areas where model biases exist. Marked variations in the large scale structure of the cloud field were observed during the experiment on both day-to-day and on diurnal timescales. In the remote maritime region the model is shown to have a good representation of synoptically induced variability in both cloud cover and marine boundary layer depth. Satellite observations show a strong diurnal cycle in cloud fraction and liquid water path in the stratocumulus with enhanced clearances of the cloud deck along the Chilean and Peruvian coasts on certain days. The model accurately simulates the phase of the diurnal cycle but is unable to capture the coastal clearing of cloud. Observations along the 20° S latitude line show a gradual increase in the depth of the boundary layer away from the coast. This trend is well captured by the model (typical low bias of 200 m) although significant errors exist at the coast where the model marine boundary layer is too shallow and moist. Drizzle in the model responds to changes in liquid water path in a manner that is consistent with previous ship-borne observations in the region although the intensity of this drizzle is likely to be too high, particularly in the more polluted coastal region where higher cloud droplet number concentrations are typical. Another mode of variability in the cloud field that the model is unable to capture are regions of pockets of open cellular convection embedded in the overcast stratocumulus deck and an example of such a feature that was sampled during VOCALS-REx is shown.


2009 ◽  
Vol 9 (12) ◽  
pp. 4039-4052 ◽  
Author(s):  
I. Sandu ◽  
J.-L. Brenguier ◽  
O. Thouron ◽  
B. Stevens

Abstract. Large-Eddy Simulations (LES) are performed to examine the impact of hygroscopic aerosols on the diurnal cycle of marine stratocumulus clouds, under varying meteorological forcing conditions. When the cloud condensation nuclei concentration increase is sufficient to inhibit drizzle formation in the cloud layer, the precipitating and the non-precipitating cloud layers exhibit contrasting evolutions, with noticeable differences in liquid water path. Aerosol-induced modifications of the droplet sedimentation and drizzle precipitation result in noticeable changes of the entrainment velocity at cloud top, but also in significant changes of the vertical stratification in the boundary layer. This set of simulations is then used to evaluate whether a model which does not explicitly represent the effects of the interactions occurring within the boundary layer on its vertical stratification (i.e. such as a mixed-layer model) is capable of reproducing at least the sign, if not the amplitude, of these aerosol impacts on the liquid water path. It is shown that the evolution of the vertical structure is key to the responses we simulate, and must be considered in bulk models that wish to predict the impact of aerosol perturbations on the radiative properties of stratocumulus-topped boundary layers.


2015 ◽  
Vol 73 (1) ◽  
pp. 331-351 ◽  
Author(s):  
Ryan Eastman ◽  
Robert Wood

Abstract A Lagrangian technique is developed to sample satellite data to quantify and understand factors controlling temporal changes in low-cloud properties (cloud cover, areal-mean liquid water path, and droplet concentration). Over 62 000 low-cloud scenes over the eastern subtropical/tropical oceans are sampled using the A-Train satellites. Horizontal wind fields at 925 hPa from the ERA-Interim are used to compute 24-h, two-dimensional, forward, boundary layer trajectories with trajectory locations starting on the CloudSat/CALIPSO track. Cloud properties from MODIS and AMSR-E are sampled at the trajectory start and end points, allowing for direct measurement of the temporal cloud evolution. The importance of various controls (here, boundary layer depth, lower-tropospheric stability, and precipitation) on cloud evolution is evaluated by comparing cloud evolution for different initial values of these controls. Viewing angle biases are removed and cloud anomalies (diurnal and seasonal cycles removed) are used throughout to quantify cloud evolution relative to the climatological-mean evolution. Cloud property anomalies show temporal changes similar to those expected for a stochastic red noise process, with linear relationships between initial anomalies and their mean 24-h changes. This creates a potential bias when comparing the evolutions of sets of trajectories with different initial anomalies; three methods are introduced and evaluated to account for this. Results provide statistically robust observational support for theoretical/modeling studies by showing that low clouds in deep boundary layers and under weak inversions are prone to break up. Precipitation shows a more complex and less statistically significant relationship with cloud breakup. Cloud cover in shallow precipitating boundary layers is more persistent than in deep precipitating boundary layers. Liquid water path and cloud droplet concentration decrease more rapidly for precipitating clouds and in deep boundary layers.


2010 ◽  
Vol 10 (9) ◽  
pp. 4097-4109 ◽  
Author(s):  
J. Uchida ◽  
C. S. Bretherton ◽  
P. N. Blossey

Abstract. The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES) and a mixed layer model (MLM). The strength of the second aerosol indirect effect simulated by the two model types agrees within 50% for cases in which the LES-simulated boundary layer remains well mixed, if the MLM entrainment closure includes the effects of cloud droplet sedimentation. To achieve this agreement, parameters in the MLM entrainment closure and the drizzle parameterization must be retuned to match the LES. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a comparable decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed. Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and parameterized microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates the central assumption of an MLM, substantially limiting the range of conditions that MLM-predicted sensitivities to droplet concentration are meaningful.


2014 ◽  
Vol 142 (2) ◽  
pp. 668-685 ◽  
Author(s):  
Maike Ahlgrimm ◽  
Richard Forbes

Abstract In this study, the representation of marine boundary layer clouds is investigated in the ECMWF model using observations from the Atmospheric Radiation Measurement (ARM) mobile facility deployment to Graciosa Island in the North Atlantic. Systematic errors in the occurrence of clouds, liquid water path, precipitation, and surface radiation are assessed in the operational model for a 19-month-long period. Boundary layer clouds were the most frequently observed cloud type but were underestimated by 10% in the model. Systematic but partially compensating surface radiation errors exist and can be linked to opposing cloud cover and liquid water path errors in broken (shallow cumulus) and overcast (stratocumulus) low-cloud regimes, consistent with previously reported results from the continental ARM Southern Great Plains (SGP) site. Occurrence of precipitation is overestimated by a factor of 1.5 at cloud base and by a factor of 2 at the surface, suggesting deficiencies in both the warm-rain formation and subcloud evaporation parameterizations. A single-column version of the ECMWF model is used to test combined changes to the parameterizations of boundary layer, autoconversion/accretion, and rain evaporation processes at Graciosa. Low-cloud occurrence, liquid water path, radiation biases, and precipitation occurrence are all significantly improved when compared to the ARM observations. Initial results from the modified parameterizations in the full model show improvement in the global top-of-the-atmosphere shortwave radiation, suggesting the reduced errors in the comparison at Graciosa are more widely applicable to boundary layer cloud around the globe.


Sign in / Sign up

Export Citation Format

Share Document