scholarly journals The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?

2010 ◽  
Vol 10 (9) ◽  
pp. 4097-4109 ◽  
Author(s):  
J. Uchida ◽  
C. S. Bretherton ◽  
P. N. Blossey

Abstract. The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES) and a mixed layer model (MLM). The strength of the second aerosol indirect effect simulated by the two model types agrees within 50% for cases in which the LES-simulated boundary layer remains well mixed, if the MLM entrainment closure includes the effects of cloud droplet sedimentation. To achieve this agreement, parameters in the MLM entrainment closure and the drizzle parameterization must be retuned to match the LES. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a comparable decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed. Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and parameterized microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates the central assumption of an MLM, substantially limiting the range of conditions that MLM-predicted sensitivities to droplet concentration are meaningful.

2009 ◽  
Vol 9 (6) ◽  
pp. 25853-25883
Author(s):  
J. Uchida ◽  
C. S. Bretherton ◽  
P. N. Blossey

Abstract. The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES) and a mixed layer model (MLM), to see if the two model types agree on the strength of the second aerosol indirect effect. Good agreement can be obtained if the MLM entrainment closure explicitly reduces entrainment efficiency proportional to the rate of cloud droplet sedimentation at cloud top for cases in which the LES-simulated boundary layer remains well mixed, with a single peak in the vertical profile of vertical velocity variance. To achieve this agreement, the MLM entrainment closure and the drizzle parameterization must be modified from their observationally-based defaults. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a similar decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed. Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates MLM-predicted sensitivity to droplet concentrations.


2009 ◽  
Vol 22 (1) ◽  
pp. 20-38 ◽  
Author(s):  
Peter Caldwell ◽  
Christopher S. Bretherton

Abstract In this paper, an idealized framework based on a cloud-topped mixed layer model is developed for investigating feedbacks between subtropical stratocumulus (Sc) and global warming. The two principal control parameters are Sc-region sea surface temperature (SST) and intertropical convergence zone (ITCZ) SST (which controls the temperature and mean subsidence profiles above the Sc). The direct effect of CO2 doubling (leaving all other parameters fixed) is tested and found to somewhat reduce liquid water path; discussion of this effect on the SST-change simulations is included. The presence of a cold boundary layer is found to significantly affect the temperature and subsidence rate just above cloud top by enhancing lower-tropospheric diabatic cooling in this region. A simple representation of this effect (easily generalizable to a more realistic boundary layer model) is developed. Steady-state solutions are analyzed as a function of local and ITCZ SST. Two climate change scenarios are considered. The first scenario is an equal increase of local and ITCZ SSTs. In this case, predicted boundary layer depth and cloud thickness increase. This is found in a simplified context to result from subsidence and entrainment decreases due to increased static stability in a warmer climate. In the second case, local SST change is diagnosed from a surface energy balance under the assumption that ocean heat transport remains unchanged. In this case, predicted boundary layer depth decreases. Cloud continues to thicken with rising ITCZ SST, but at a rate much reduced in comparison to the equal-warming scenario. This cloud shading feedback keeps SST in the Sc region nearly constant as the ITCZ SST increases. Model sensitivity to aerosol indirect effects is also considered by varying the assumed droplet concentration. The resulting change in liquid water path is small, suggesting a weaker dependence on second indirect effect than found in previous studies.


2007 ◽  
Vol 135 (7) ◽  
pp. 2786-2793 ◽  
Author(s):  
Stephan R. de Roode

Abstract Results from simulations of the stratocumulus-topped boundary layer with one-dimensional versions of general simulation models typically exhibit a wide range of spread in the modeled liquid water path (LWP). These discrepancies are often attributed to differences in the modeled entrainment rate. Results from a large eddy simulation of the First International Satellite Cloud Climatology Project Regional Experiment I stratocumulus case are analyzed. The diagnosed eddy diffusivities for heat and moisture are found to differ by about a factor of 3. Moreover, both have a much larger magnitude than the ones typically applied in boundary layer parameterization schemes. Motivated by these results mean state solutions are analyzed for the specific case in which the vertical fluxes of heat and moisture are prescribed, whereas eddy diffusivity profiles are systematically varied by multiplication with a constant factor. The solutions demonstrate that any value, ranging from zero to a maximum adiabatic value, can be obtained for the LWP. In the subtropical parts over the ocean where horizontally extended stratocumulus fields persist, the surface sensible heat flux is typically small, whereas surface evaporation and entrainment of relatively dry air from above the surface can result in significant moisture fluxes. If the eddy diffusivity values are small, then the mean specific humidity will tend to decrease quite rapidly with height in order to support the humidity flux. This results in erroneous low humidity values in the upper part of the boundary layers causing low LWP values.


2009 ◽  
Vol 66 (2) ◽  
pp. 432-449 ◽  
Author(s):  
Peter Caldwell ◽  
Christopher S. Bretherton

Abstract This paper describes a series of 6-day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At all times of the day, entrainment is found to be proportional to the vertically integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated liquid water path. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.


2015 ◽  
Vol 73 (1) ◽  
pp. 331-351 ◽  
Author(s):  
Ryan Eastman ◽  
Robert Wood

Abstract A Lagrangian technique is developed to sample satellite data to quantify and understand factors controlling temporal changes in low-cloud properties (cloud cover, areal-mean liquid water path, and droplet concentration). Over 62 000 low-cloud scenes over the eastern subtropical/tropical oceans are sampled using the A-Train satellites. Horizontal wind fields at 925 hPa from the ERA-Interim are used to compute 24-h, two-dimensional, forward, boundary layer trajectories with trajectory locations starting on the CloudSat/CALIPSO track. Cloud properties from MODIS and AMSR-E are sampled at the trajectory start and end points, allowing for direct measurement of the temporal cloud evolution. The importance of various controls (here, boundary layer depth, lower-tropospheric stability, and precipitation) on cloud evolution is evaluated by comparing cloud evolution for different initial values of these controls. Viewing angle biases are removed and cloud anomalies (diurnal and seasonal cycles removed) are used throughout to quantify cloud evolution relative to the climatological-mean evolution. Cloud property anomalies show temporal changes similar to those expected for a stochastic red noise process, with linear relationships between initial anomalies and their mean 24-h changes. This creates a potential bias when comparing the evolutions of sets of trajectories with different initial anomalies; three methods are introduced and evaluated to account for this. Results provide statistically robust observational support for theoretical/modeling studies by showing that low clouds in deep boundary layers and under weak inversions are prone to break up. Precipitation shows a more complex and less statistically significant relationship with cloud breakup. Cloud cover in shallow precipitating boundary layers is more persistent than in deep precipitating boundary layers. Liquid water path and cloud droplet concentration decrease more rapidly for precipitating clouds and in deep boundary layers.


2009 ◽  
Vol 9 (2) ◽  
pp. 5465-5503 ◽  
Author(s):  
I. Sandu ◽  
J.-L. Brenguier ◽  
O. Thouron ◽  
B. Stevens

Abstract. Large Eddy Simulations (LES) are performed to examine the impact of hygroscopic aerosols on the diurnal cycle of marine stratocumulus clouds, under varying meteorological forcing conditions. When the cloud condensation nuclei concentration increase is sufficient to inhibit drizzle formation in the cloud layer, the precipitating and the non-precipitating cloud layers exhibit contrasting evolutions, with noticeable differences in liquid water path. Aerosol induced modifications of the droplet sedimentation and drizzle precipitation result in noticeable changes of the entrainment velocity at cloud top, but also in significant changes of the vertical stratification in the boundary layer. This set of simulations is then used to evaluate whether a model which does not explicitly represent the effects of the interactions occurring within the boundary layer on its vertical stratification (i.e. such as a mixed layer model) is capable of reproducing at least the sign, if not the amplitude, of these aerosol impacts on the liquid water path. It is shown that the deviations from the mixed layer idealized state are crucial ingredients of the aerosol impacts so that a mixed layer model is unable to even replicate the sign of the liquid water path changes.


1995 ◽  
Vol 34 (2) ◽  
pp. 471-481 ◽  
Author(s):  
Y. Fujiyoshi ◽  
Y. Ishizaka ◽  
T. Takeda ◽  
T. Hayasaka ◽  
M. Tanaka

Abstract Special observations were made over the southwest island area of the East China Sea from 12 to 27 January 1991 as part of the World Climate Research Program in Japan (WENPEX—Western North Pacific Cloud–Radiation Experiment). Two aircraft were used to determine the air truth of the total vertical liquid water path (LWP) using a microwave radiometer. One airplane was fitted with a 37-GHz radiometer and flew above planetary boundary layer clouds. The other flew inside the clouds with a cloud droplet spectrometer. These aircraft flew simultaneously along the same flight path when planetary boundary layer clouds were formed over the warm sea during an outbreak of cold air. The result of the air truth of the LWPradiometer indicates that the 37-GHZ microwave radiometer gives an estimation of the LWP accurate to 100 mg cm−2. The shortwave cloud albedo was related to the LWPradiometer. The albedo increases with the LWP, independent of cloud type, when measured just above the cloud tops. The measured albedo is nearly the same as the calculated albedo when the LWPradiometer is larger than 60 mg cm−2 but much smaller than the calculated albedo when the LWPradiometer is less than 40 mg cm−2. Cloud-top irregularity is suggested to be the primary cause of this discrepancy. The degree of inhomogeneity of the horizontal distribution of liquid water appears to be correlated with the amount of precipitable water in the planetary boundary layer.


2015 ◽  
Vol 8 (4) ◽  
pp. 4307-4323
Author(s):  
P. Wu ◽  
X. Dong ◽  
B. Xi

Abstract. In this study, we retrieve and document drizzle properties, and investigate the impact of drizzle on cloud property retrievals from ground-based measurements at the ARM Azores site from June 2009 to December 2010. For the selected cloud and drizzle samples, the drizzle occurrence is 42.6% with a maximum of 55.8% in winter and a minimum of 35.6% in summer. The annual means of drizzle liquid water path LWPd, effective radius rd, and number concentration Nd for the rain (virga) samples are 5.48 (1.29) g m−2, 68.7 (39.5) μm, and 0.14 (0.38) cm−3. The seasonal mean LWPd values are less than 4% of the MWR-retrieved LWP values. The annual mean differences in cloud-droplet effective radius with and without drizzle are 0.12 and 0.38 μm, respectively, for the virga and rain samples. Therefore, we conclude that the impact of drizzle on cloud property retrievals is insignificant at the ARM Azores site.


2010 ◽  
Vol 10 (21) ◽  
pp. 10639-10654 ◽  
Author(s):  
C. S. Bretherton ◽  
R. Wood ◽  
R. C. George ◽  
D. Leon ◽  
G. Allen ◽  
...  

Abstract. Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx) are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a~transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K), sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with accumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m) and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important. Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore. Winds from ECMWF and NCEP operational analyses have an rms difference of only 1 m s−1 from collocated airborne leg-mean observations in the boundary layer and 2 m s−1 above the boundary layer. This supports the use of trajectory analysis for interpreting REx observations. Two-day back-trajectories from the 20° S transect suggest that eastward of 75° W, boundary layer (and often free-tropospheric) air has usually been exposed to South American coastal aerosol sources, while at 85° W, neither boundary-layer or free-tropospheric air has typically had such contact.


2015 ◽  
Vol 72 (5) ◽  
pp. 2033-2040 ◽  
Author(s):  
Mohamed S. Ghonima ◽  
Joel R. Norris ◽  
Thijs Heus ◽  
Jan Kleissl

Abstract A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document