Generation and Propagation of Inertia–Gravity Waves from Vortex Dipoles and Jets

2009 ◽  
Vol 66 (5) ◽  
pp. 1294-1314 ◽  
Author(s):  
Shuguang Wang ◽  
Fuqing Zhang ◽  
Chris Snyder

Abstract This study investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Two types of initially balanced and localized jets induced by vortex dipoles are examined here. These jets have their maximum strength either at the surface or in the middle levels of a uniformly stratified atmosphere. Within these dipoles, inertia–gravity waves with intrinsic frequencies 1–2 times the Coriolis parameter are simulated in the jet exit region. These gravity waves are nearly phase locked with the jets as shown in previous studies, suggesting spontaneous emission of the waves by the localized jets. A ray tracing technique is further employed to investigate the propagation effects of gravity waves. The ray tracing analysis reveals strong variation of wave characteristics along ray paths due to variations (particularly horizontal variations) in the propagating environment. The dependence of wave amplitude on the jet strength (and thus on the Rossby number of the flow) is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of the stationary gravity waves in the simulations with 90-km grid spacing increases as the square of the Rossby number (Ro), when Ro falls in a small range of 0.05–0.15, but does so significantly more rapidly when a smaller grid spacing is used.

2008 ◽  
Vol 596 ◽  
pp. 169-189 ◽  
Author(s):  
E. I. ÓLAFSDÓTTIR ◽  
A. B. OLDE DAALHUIS ◽  
J. VANNESTE

We consider the linear evolution of a localized vortex with Gaussian potential vorticity that is superposed on a horizontal Couette flow in a rapidly rotating strongly stratified fluid. The Rossby number, defined as the ratio of the shear of the Couette flow to the Coriolis frequency, is assumed small. Our focus is on the inertia–gravity waves that are generated spontaneously during the evolution of the vortex. These are exponentially small in the Rossby number and hence are neglected in balanced models such as the quasi-geostrophic model and its higher-order generalizations. We develop an exponential-asymptotic approach, based on an expansion in sheared modes, to give an analytic description of the three-dimensional structure of the inertia–gravity waves emitted by the vortex. This provides an explicit example of the spontaneous radiation of inertia–gravity waves by localized balanced motion in the small-Rossby-number regime.The inertia–gravity waves are emitted as a burst of four wavepackets propagating downstream of the vortex. The approach employed reduces the computation of inertia–gravity-wave fields to a single quadrature, carried out numerically, for each spatial location and each time. This makes it possible to unambiguously define an initial state that is entirely free of inertia–gravity waves, and circumvents the difficulties generally associated with the separation between balanced motion and inertia–gravity waves.


2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


2007 ◽  
Vol 64 (12) ◽  
pp. 4417-4431 ◽  
Author(s):  
Chris Snyder ◽  
David J. Muraki ◽  
Riwal Plougonven ◽  
Fuqing Zhang

Abstract Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.


2008 ◽  
Vol 26 (9) ◽  
pp. 2551-2568 ◽  
Author(s):  
A. Spiga ◽  
H. Teitelbaum ◽  
V. Zeitlin

Abstract. Four major sources of inertia-gravity waves are known in the Earth atmosphere: upper-tropospheric jet-streams, lower-tropospheric fronts, convection and topography. The Andes Cordillera region is an area where all of these major sources are potentially present. By combining ECMWF and NCEP-NCAR reanalysis, satellite and radiosoundings data and mesoscale WRF simulations in the Andes Cordillera region, we were able to identify the cases where, respectively, the jet-stream source, the convective source and the topography source are predominantly in action. We retrieve emitted wave parameters for each case, compare them, and analyse possible emission mechanisms. The WRF mesoscale model shows very good performance in reproducing the inertia-gravity waves identified in the data analysis, and assessing their likely sources.


2008 ◽  
Vol 65 (5) ◽  
pp. 1622-1637 ◽  
Author(s):  
J. Vanneste

Abstract This paper discusses some of the mechanisms whereby fast inertia–gravity waves can be generated spontaneously by slow, balanced atmospheric and oceanic flows. In the small Rossby number regime relevant to midlatitude dynamics, high-accuracy balanced models, which filter out inertia–gravity waves completely, can in principle describe the evolution of suitably initialized flows up to terms that are exponentially small in the Rossby number ɛ, that is, of the form exp(−α/ɛ) for some α > 0. This suggests that the mechanisms of inertia–gravity wave generation, which are not captured by these balanced models, are also exponentially weak. This has been confirmed by explicit analytical results obtained for a few highly simplified models. These results are reviewed, and some of the exponential-asymptotic techniques that have been used in their derivation are presented. Two types of mechanisms are examined: spontaneous-generation mechanisms, which generate exponentially small waves from perfectly balanced initial conditions, and unbalanced instability mechanisms, which amplify unbalanced initial perturbations of steady flows. The relevance of the results to realistic flows is discussed.


2013 ◽  
Vol 20 (1) ◽  
pp. 25-34 ◽  
Author(s):  
A. Wirth

Abstract. Using a fine resolution numerical model (40002 × 2 grid-points) of the two-layer shallow-water equations of the mid-latitude β-plane dynamics, it is shown that there is no sudden breakdown of balance in the turbulent enstrophy cascade but a faint and continuous emission of inertia–gravity waves. The wave energy accumulates in the equator-ward region of the domain due to the Coriolis parameter depending on the latitude and dispersion relation of inertia–gravity waves.


2016 ◽  
Vol 34 (5) ◽  
pp. 543-555 ◽  
Author(s):  
Maria Mihalikova ◽  
Kaoru Sato ◽  
Masaki Tsutsumi ◽  
Toru Sato

Abstract. Inertia-gravity waves (IGWs) are an important component for the dynamics of the middle atmosphere. However, observational studies needed to constrain their forcing are still insufficient especially in the remote areas of the Antarctic region. One year of observational data (January to December 2013) by the PANSY radar of the wind components (vertical resolution of 150 m and temporal resolution of 30 min) are used to derive statistical analysis of the properties of IGWs with short vertical wavelengths ( ≤ 4 km) and ground-based periods longer than 4 h in the lowermost stratosphere (height range 10 to 12 km) with the help of the hodograph method. The annual change of the IGWs parameters are inspected but no pronounced year cycle is found. The year is divided into two seasons (summer and winter) based on the most prominent difference in the ratio of Coriolis parameter (f) to intrinsic frequency (ω^) distribution. Average of f∕ω^  for the winter season is 0.40 and for the summer season 0.45 and the average horizontal wavelengths are 140 and 160 km respectively. Vertical wavelengths have an average of 1.85 km through the year. For both seasons the properties of IGWs with upward and downward propagation of the energy are also derived and compared. The percentage of downward propagating waves is 10.7 and 18.4 % in the summer and winter season respectively. This seasonal change is more than the one previously reported in the studies from mid-latitudes and model-based studies. It is in agreement with the findings of past radiosonde data-based studies from the Antarctic region. In addition, using the so-called dual-beam technique, vertical momentum flux and the variance of the horizontal perturbation velocities of IGWs are examined. Tropospheric disturbances of synoptic-scale are suggested as a source of episodes of IGWs with large variance of horizontal perturbation velocities, and this is shown in a number of cases.


2016 ◽  
Vol 808 ◽  
pp. 539-561 ◽  
Author(s):  
P. Maurer ◽  
S. Joubaud ◽  
P. Odier

In the ocean, stratification and rotation allow for the existence of inertia–gravity waves. Instabilities of these waves, such as triadic resonant instability (TRI), may play a key role in the mixing process of the deep ocean. In an experimental set-up, we generate inertia–gravity waves which may become unstable depending on the background rotation and wave frequency. The instability produces secondary waves that match the spatial and temporal resonance conditions of TRI. The effect of rotation is introduced in a pre-existing theory and results in a prediction of the growth rate of TRI in the case of an infinite plane wave. The issue of finite size of the beam is then addressed using a simple model in which we show that the instability is enhanced in a given range of Coriolis parameter. Finally, we compare the experimental threshold of the instability with the model, and find good agreement except at higher rotation rate. At constant primary wave frequency, we analyse the evolution of the secondary wave characteristics with rotation. The appearance of unexpected sub-inertial secondary waves may be related to the discrepancy observed between predicted and experimental thresholds at higher rotation.


2010 ◽  
Vol 649 ◽  
pp. 187-203 ◽  
Author(s):  
PAUL D. WILLIAMS ◽  
PETER L. READ ◽  
THOMAS W. N. HAINE

We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.


Sign in / Sign up

Export Citation Format

Share Document