scholarly journals The Role of SST in the East Pacific Warm Pool in the Interannual Variability of Central American Rainfall

2009 ◽  
Vol 22 (10) ◽  
pp. 2605-2623 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Antonio J. Busalacchi

Abstract Satellite- and gauge-based precipitation and sea surface temperature (SST) are analyzed to understand the role of SST in the east Pacific warm pool (EPWP) in the interannual variability of Central American rainfall. It is shown that, during the rainy season following the mature phase of an El Niño event, an anomalously warm EPWP can cause a rapid enhancement of the eastern Pacific intertropical convergence zone (EP ITCZ), which directly leads to a positive rainfall anomaly over Central America. Moreover, the timing and amplitude of the SST-enhanced EP ITCZ depends on the persistence of the El Niño event. The longer the equatorial SST anomaly persists, the longer the EPWP is subject to anomalous shortwave heating, and thus the stronger (and later) the subsequent SST enhancement of the EP ITCZ. The implications for regional climate monitoring and predictability are explored; potential predictability of seasonal rainfall is demonstrated 4 months in advance using an SST-based index designed to capture the essence of the above-mentioned mechanism.

2009 ◽  
Vol 22 (6) ◽  
pp. 1375-1392 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Antonio J. Busalacchi

Abstract In comparison with the western and equatorial Pacific Ocean, relatively little is known about the east Pacific warm pool (EPWP). Observations indicate that the interannual variability of sea surface temperature (SST) in the EPWP is highly correlated (0.95) with the El Niño–Southern Oscillation (ENSO). In this paper, an ocean general circulation model (OGCM) of the tropical Pacific Ocean and various atmospheric and oceanic observations are used to diagnose the physical processes governing the interannual variability of SST in the EPWP. Atmospheric forcings for the OGCM are derived purely from satellite observations between 1988 and 2004. Shortwave heating is identified as playing a dominant role in the interannual SST tendency of the EPWP. The high correlation between SST in the EPWP and eastern equatorial Pacific is therefore explained not by ocean processes, but by an atmospheric link. ENSO-driven equatorial SST anomalies modify the distribution of the overlying atmospheric vertical motions and therefore cloud cover and ultimately shortwave heating. During an El Niño event, for example, the ITCZ is equatorward displaced from its normal position over the EPWP, resulting in anomalously large shortwave heating over the EPWP. Analysis of poleward ocean heat transport and coastal Kelvin waves confirms that oceanic processes are not sufficient to explain the interannual variability of the EPWP.


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 84-87 ◽  
Author(s):  
Yi Ge Zhang ◽  
Mark Pagani ◽  
Zhonghui Liu

The appearance of permanent El Niño–like conditions prior to 3 million years ago is founded on sea-surface temperature (SST) reconstructions that show invariant Pacific warm pool temperatures and negligible equatorial zonal temperature gradients. However, only a few SST records are available, and these are potentially compromised by changes in seawater chemistry, diagenesis, and calibration limitations. For this study, we establish new biomarker-SST records and show that the Pacific warm pool was ~4°C warmer 12 million years ago. Both the warm pool and cold tongue slowly cooled toward modern conditions while maintaining a zonal temperature gradient of ~3°C in the late Miocene, which increased during the Plio-Pleistocene. Our results contrast with previous temperature reconstructions that support the supposition of a permanent El Niño–like state.


2017 ◽  
Vol 44 (1) ◽  
pp. 438-445 ◽  
Author(s):  
Gregory C. Johnson ◽  
Abigail N. Birnbaum
Keyword(s):  
El Niño ◽  
El Nino ◽  

2018 ◽  
Vol 75 (4) ◽  
pp. 1121-1141 ◽  
Author(s):  
Justin W. Whitaker ◽  
Eric D. Maloney

Abstract The east Pacific warm pool exhibits basic-state variability associated with the Madden–Julian oscillation (MJO) and Caribbean low-level jet (CLLJ), which affects the development of easterly waves (EWs). This study compares and contrasts composite changes in the background environment, eddy kinetic energy (EKE) budgets, and EW tracks during MJO and CLLJ events. While previous studies have shown that the MJO influences jet activity in the east Pacific, the influence of the MJO and CLLJ on the east Pacific and EWs is not synonymous. The CLLJ is a stronger modulator of the ITCZ than the MJO, while the MJO has a more expansive influence on the northeastern portion of the basin. Anomalous low-level westerly MJO and CLLJ periods are associated with favorable conditions for EW development paralleling the Central American coast, contrary to previous findings about the relationship of the CLLJ to EWs. Easterly MJO and CLLJ periods support enhanced ITCZ EW development, although the CLLJ is a greater modulator of EW tracks in this region, which is likely associated with stronger moisture and convection variations and their subsequent influence on the EKE budget. ITCZ EW growth during easterly MJO periods is more reliant on barotropic conversion than during strong CLLJ periods, when eddy available potential energy (EAPE)-to-EKE conversion associated with ITCZ convection is more important. Thus, the influence of these phenomena on east Pacific EWs should be considered distinct.


2013 ◽  
Vol 26 (13) ◽  
pp. 4816-4827 ◽  
Author(s):  
Nathaniel C. Johnson

Abstract It is now widely recognized that El Niño–Southern Oscillation (ENSO) occurs in more than one form, with the canonical eastern Pacific (EP) and more recently recognized central Pacific (CP) ENSO types receiving the most focus. Given that these various ENSO “flavors” may contribute to climate variability and long-term trends in unique ways, and that ENSO variability is not limited to these two types, this study presents a framework that treats ENSO as a continuum but determines a finite maximum number of statistically distinguishable representative ENSO patterns. A neural network–based cluster analysis called self-organizing map (SOM) analysis paired with a statistical distinguishability test determines nine unique patterns that characterize the September–February tropical Pacific SST anomaly fields for the period from 1950 through 2011. These nine patterns represent the flavors of ENSO, which include EP, CP, and mixed ENSO patterns. Over the 1950–2011 period, the most significant trends reflect changes in La Niña patterns, with a shift in dominance of La Niña–like patterns with weak or negative western Pacific warm pool SST anomalies until the mid-1970s, followed by a dominance of La Niña–like patterns with positive western Pacific warm pool SST anomalies, particularly after the mid-1990s. Both an EP and especially a CP El Niño pattern experienced positive frequency trends, but these trends are indistinguishable from natural variability. Overall, changes in frequency within the ENSO continuum contributed to the pattern of tropical Pacific warming, particularly in the equatorial eastern Pacific and especially in relation to changes of La Niña–like rather than El Niño–like patterns.


2007 ◽  
Vol 20 (13) ◽  
pp. 2895-2916 ◽  
Author(s):  
Qian Song ◽  
Gabriel A. Vecchi ◽  
Anthony J. Rosati

Abstract The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between positive IODZM and El Niño events, through a composite analysis. The IODZM events in the CGCM grow through feedbacks between heat-content anomalies and SST-related atmospheric anomalies, particularly in the eastern tropical Indian Ocean. The composite IODZM events that co-occur with El Niño have stronger anomalies and a sharper east–west SSTA contrast than those that occur without El Niño. IODZM events, whether or not they occur with El Niño, are preceded by distinctive Indo-Pacific warm pool anomaly patterns in boreal spring: in the central Indian Ocean easterly surface winds, and in the western equatorial Pacific an eastward shift of deep convection, westerly surface winds, and warm sea surface temperature. However, delayed onsets of the anomaly patterns (e.g., boreal summer) are often not followed by IODZM events. The same anomaly patterns often precede El Niño, suggesting that the warm pool conditions favorable for both IODZM and El Niño are similar. Given that IODZM events can occur without El Niño, it is proposed that the observed IODZM–El Niño relation arises because the IODZM and El Niño are both large-scale phenomena in which variations of the Indo-Pacific warm pool deep convection plays a central role. Yet each phenomenon has its own dynamics and life cycle, allowing each to develop without the other. The CGCM integration also shows substantial decadal modulation of the occurrence of IODZM events, which is found to be not in phase with that of El Niño events. There is a weak, though significant, negative correlation between the two. Moreover, the statistical relationship between the IODZM and El Niño displays strong decadal variability.


Sign in / Sign up

Export Citation Format

Share Document