scholarly journals Independent Component Analysis of Climate Data: A New Look at EOF Rotation

2009 ◽  
Vol 22 (11) ◽  
pp. 2797-2812 ◽  
Author(s):  
A. Hannachi ◽  
S. Unkel ◽  
N. T. Trendafilov ◽  
I. T. Jolliffe

Abstract The complexity inherent in climate data makes it necessary to introduce more than one statistical tool to the researcher to gain insight into the climate system. Empirical orthogonal function (EOF) analysis is one of the most widely used methods to analyze weather/climate modes of variability and to reduce the dimensionality of the system. Simple structure rotation of EOFs can enhance interpretability of the obtained patterns but cannot provide anything more than temporal uncorrelatedness. In this paper, an alternative rotation method based on independent component analysis (ICA) is considered. The ICA is viewed here as a method of EOF rotation. Starting from an initial EOF solution rather than rotating the loadings toward simplicity, ICA seeks a rotation matrix that maximizes the independence between the components in the time domain. If the underlying climate signals have an independent forcing, one can expect to find loadings with interpretable patterns whose time coefficients have properties that go beyond simple noncorrelation observed in EOFs. The methodology is presented and an application to monthly means sea level pressure (SLP) field is discussed. Among the rotated (to independence) EOFs, the North Atlantic Oscillation (NAO) pattern, an Arctic Oscillation–like pattern, and a Scandinavian-like pattern have been identified. There is the suggestion that the NAO is an intrinsic mode of variability independent of the Pacific.

2019 ◽  
Vol 24 (4) ◽  
pp. 513-523
Author(s):  
Xin Wu ◽  
Guoqiang Xue ◽  
Shun Wang ◽  
Yongqiang Feng ◽  
Qimao Zhang ◽  
...  

Powerline noise is one of the most common contaminating types of the observed transient electromagnetic signal. For the conventional TEM method using the bipolar square wave as transmitter waveform, synchronous sampling is the main technology for powerline noise suppression, and notching filtering is sometimes used also. When the transmitter wave has been encoded based on pseudo-random binary sequence, it has proven difficult to achieve the effect by using the above-mentioned conventional methods for the suppression of powerline noise. This is due to the fact that the duration of each logic states of the pseudo-coded transmitter waveform is normally inconsistent. In this study, a method for the suppression of powerline noise is proposed, which is based on the independent component analysis method (ICA). In order to introduce the observation and processing details of this method more clearly, we attempt to apply this method to the time-domain electromagnetic method with coded source researched and developed by the institute of geology and geophysics of Chinese academy of sciences on the basis of the MTEM method. In terms of specific processes, the electrical measurements need to be simultaneously observed in the inline and crossline directions firstly, and then the data will be input into the processing procedures based on ICA method to realize the effective separation of the powerline noise and the useful signals. The processing results of the simulation data and field data show that the method proposed in this paper can suppress the powerline noise effectively, and the processing results build a good data foundation for the subsequent processing.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


PIERS Online ◽  
2005 ◽  
Vol 1 (6) ◽  
pp. 750-753 ◽  
Author(s):  
Anxing Zhao ◽  
Yansheng Jiang ◽  
Wenbing Wang

Sign in / Sign up

Export Citation Format

Share Document