scholarly journals Well-Posed Lateral Boundary Conditions for Spectral Semi-Implicit Semi-Lagrangian Schemes: Tests in a One-Dimensional Model

2009 ◽  
Vol 137 (1) ◽  
pp. 315-330 ◽  
Author(s):  
F. Voitus ◽  
P. Termonia ◽  
P. Bénard

Abstract The aim of this paper is to investigate the feasibility of well-posed lateral boundary conditions in a Fourier spectral semi-implicit semi-Lagrangian one-dimensional model. Two aspects are analyzed: (i) the complication of designing well-posed boundary conditions for a spectral semi-implicit scheme and (ii) the implications of such a lateral boundary treatment for the semi-Lagrangian trajectory computations at the lateral boundaries. Straightforwardly imposing boundary conditions in the gridpoint-explicit part of the semi-implicit time-marching scheme leads to numerical instabilities for time steps that are relevant in today’s numerical weather prediction applications. It is shown that an iterative scheme is capable of curing these instabilities. This new iterative boundary treatment has been tested in the framework of the one-dimensional shallow-water equations leading to a significant improvement in terms of stability. As far as the semi-Lagrangian part of the time scheme is concerned, the use of a trajectory truncation scheme has been found to be stable in experimental tests, even for large values of the advective Courant number. It is also demonstrated that a well-posed buffer zone can be successfully applied in this spectral context. A promising (but not easily implemented) alternative to these three above-referenced schemes has been tested and is also presented here.

2011 ◽  
Vol 139 (6) ◽  
pp. 1844-1860 ◽  
Author(s):  
Francesca Di Giuseppe ◽  
Davide Cesari ◽  
Giovanni Bonafé

Abstract Three diverse methods of initializing soil moisture and temperature in limited-area numerical weather prediction models are compared and assessed through the use of nonstandard surface observations to identify the approach that best combines ease of implementation, improvement in forecast skill, and realistic estimations of soil parameters. The first method initializes the limited-area model soil prognostic variables by a simple interpolation from a parent global model that is used to provide the lateral boundary conditions for the forecasts, thus ensuring that the limited-area model’s soil field cannot evolve far from the host model. The second method uses the soil properties generated by a previous limited-area model forecast, allowing the soil moisture to evolve over time to a new equilibrium consistent with the regional model’s hydrological cycle. The third method implements a new local soil moisture variational analysis system that uses screen-level temperature to adjust the soil water content, allowing the use of high-resolution station data that may be available to a regional meteorological service. The methods are tested in a suite of short-term weather forecasts performed with the Consortium for Small Scale Modeling (COSMO) model over the period September–November 2008, using the ECMWF Integrated Forecast System (IFS) model to provide the lateral boundary conditions. Extensive comparisons to observations show that substantial improvements in forecast skills are achievable with improved soil temperature initialization while a smaller additional benefit in the prediction of surface fluxes is possible with the soil moisture analysis. The analysis suggests that keeping the model prognostic variables close to equilibrium with the soil state, especially for temperature, is more relevant than correcting the soil moisture initial values. In particular, if a local soil analysis system is not available, it seems preferable to adopt an “open loop” strategy rather than the interpolation from the host global model analysis. This appears to be especially true for the COSMO model in its current operational configuration since the soil–vegetation–atmosphere transfer (SVAT) scheme of the ECMWF global host model and that of COSMO are radically diverse.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 932
Author(s):  
Mary-Jane M. Bopape ◽  
Hipolito Cardoso ◽  
Robert S. Plant ◽  
Elelwani Phaduli ◽  
Hector Chikoore ◽  
...  

Weather simulations are sensitive to subgrid processes that are parameterized in numerical weather prediction (NWP) models. In this study, we investigated the response of tropical cyclone Idai simulations to different cumulus parameterization schemes using the Weather Research and Forecasting (WRF) model with a 6 km grid length. Seventy-two-hour (00 UTC 13 March to 00 UTC 16 March) simulations were conducted with the New Tiedtke (Tiedtke), New Simplified Arakawa–Schubert (NewSAS), Multi-Scale Kain–Fritsch (MSKF), Grell–Freitas, and the Betts–Miller–Janjic (BMJ) schemes. A simulation for the same event was also conducted with the convection scheme switched off. The twenty-four-hour accumulated rainfall during all three simulated days was generally similar across all six experiments. Larger differences in simulations were found for rainfall events away from the tropical cyclone. When the resolved and convective rainfall are partitioned, it is found that the scale-aware schemes (i.e., Grell–Freitas and MSKF) allow the model to resolve most of the rainfall, while they are less active. Regarding the maximum wind speed, and minimum sea level pressure (MSLP), the scale aware schemes simulate a higher intensity that is similar to the Joint Typhoon Warning Center (JTWC) dataset, however, the timing is more aligned with the Global Forecast System (GFS), which is the model providing initial conditions and time-dependent lateral boundary conditions. Simulations with the convection scheme off were found to be similar to those with the scale-aware schemes. It was found that Tiedtke simulates the location to be farther southwest compared to other schemes, while BMJ simulates the path to be more to the north after landfall. All of the schemes as well as GFS failed to simulate the movement of Idai into Zimbabwe, showing the potential impact of shortcomings on the forcing model. Our study shows that the use of scale aware schemes allows the model to resolve most of the dynamics, resulting in higher weather system intensity in the grey zone. The wrong timing of the peak shows a need to use better performing global models to provide lateral boundary conditions for downscalers.


2017 ◽  
Author(s):  
Efisio Solazzo ◽  
Christian Hogrefe ◽  
Augustin Colette ◽  
Marta Garcia-Vivanco ◽  
Stefano Galmarini

Abstract. The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with time-scale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the time scale and the fields that the two models are most sensitive to. The representation of planetary boundary layers (PBL) dynamics is pivotal to both models. In particular: i) The fluctuations slower than −1.5 days account for 70–85 % of the total ozone quadratic error; ii) A recursive, systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total error; iii) Errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); iv) The CMAQ ozone error has a weak/negligible dependence on the errors in NO2 and wind speed, while the error in NO2 significantly impacts the ozone error produced by Chimere; v) On a continent wide monitoring network-average, a zeroing out of anthropogenic emissions produces an error increase of 45 % (25 %) during summer and of 56 % (null) during winter for Chimere (CMAQ), while a zeroing out of lateral boundary conditions results in an ozone error increase of 30 % during summer and of 180 % during winter (CMAQ).


2002 ◽  
Vol 35 ◽  
pp. 503-509 ◽  
Author(s):  
Olivier Gagliardini ◽  
Jacques Meyssonnier

AbstractA local two-dimensional flow model which accounts for the anisotropic behaviour of polar ice and the evolution of its strain-induced anisotropy is briefly reviewed. Due to its complexity, it is not yet possible to use this model to simulate the flow of a whole ice sheet, and its potential applications are presently restricted to limited spatial domains around existing drilling sites. In order to calculate the local flow of ice, boundary conditions must be applied on the lateral edges of the studied domain. Since these limits correspond to fictitious sections of the ice sheet, the type of boundary condition to adopt is not obvious. In the present paper, different kinds of boundary conditions of the Dirichlet type, applied at the lateral boundary of an idealized ice sheet of simplified geometry, are discussed. This will serve as a first step towards the coupling of the local flow model with a global ice-sheet flow model.


Sign in / Sign up

Export Citation Format

Share Document