scholarly journals Spatial Patterns of NDVI Variation over Indonesia and Their Relationship to ENSO Warm Events during the Period 1982–2006

2009 ◽  
Vol 22 (24) ◽  
pp. 6612-6623 ◽  
Author(s):  
Stefan Erasmi ◽  
Pavel Propastin ◽  
Martin Kappas ◽  
Oleg Panferov

Abstract The present study is based on the assumption that vegetation in Indonesia is significantly affected by climate anomalies that are related to El Niño–Southern Oscillation (ENSO) warm phases (El Niño) during the past decades. The analysis builds upon a monthly time series from the normalized difference vegetation index (NDVI) gridded data from the Advanced Very High Resolution Radiometer (AVHRR) and two ENSO proxies, namely, sea surface temperature anomalies (SSTa) and Southern Oscillation index (SOI), and aims at the analysis of the spatially explicit dimension of ENSO impact on vegetation on the Indonesian archipelago. A time series correlation analysis between NDVI anomalies and ENSO proxies for the most recent ENSO warm events (1982–2006) showed that, in general, anomalies in vegetation productivity over Indonesia can be related to an anomalous increase of SST in the eastern equatorial Pacific and to decreases in SOI, respectively. The net effect of these variations is a significant decrease in NDVI values throughout the affected areas during the ENSO warm phases. The 1982/83 ENSO warm episode was rather short but—in terms of ENSO indices—the most extreme one within the study period. The 1997/98 El Niño lasted longer but was weaker. Both events had significant impact on vegetation in terms of negative NDVI anomalies. Compared to these two major warm events, the other investigated events (1987/88, 1991/92, 1994/95, and 2002/03) had no significant effect on vegetation in the investigated region. The land cover–type specific sensitivity of vegetation to ENSO anomalies revealed thresholds of vegetation response to ENSO warm events. The results for the 1997/98 ENSO warm event confirm the hypothesis that the vulnerability of vegetated tropical land surfaces to drought conditions is considerably affected by land use intensity. In particular, it could be shown that natural forest areas are more resistant to drought stress than degraded forest areas or cropland. Comparing the spatially explicit patterns of El Niño–related vegetation variation during the major El Niño phases, the spatial distribution of affected areas reveals distinct core regions of ENSO drought impact on vegetation for Indonesia that coincide with forest conversion and agricultural intensification hot spots.

Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 448 ◽  
Author(s):  
Phan Diem ◽  
Uday Pimple ◽  
Asamaporn Sitthi ◽  
Pariwate Varnakovida ◽  
Katsunori Tanaka ◽  
...  

This study investigated the spatiotemporal dynamics of tropical deciduous forest including dry dipterocarp forest (DDF) and mixed deciduous forest (MDF) and its phenological changes in responses to El Niño and La Niña during 2001–2016. Based on time series of Normalized Difference Vegetation Index (NDVI) extracted from Moderate Resolution Imaging Spectroradiometer (MODIS), the start of growing season (SOS), the end of growing season (EOS), and length of growing season (LOS) were derived. In absence of climatic fluctuation, the SOS of DDF commonly started on 106 ± 7 DOY, delayed to 132 DOY in El Niño year (2010) and advanced to 87 DOY in La Niña year (2011). Thus, there was a delay of about 19 to 33 days in El Niño and an earlier onset of about 13 to 27 days in La Niña year. The SOS of MDF started almost same time as of DDF on the 107 ± 7 DOY during the neutral years and delayed to 127 DOY during El Niño, advanced to 92 DOY in La Niña year. The SOS of MDF was delayed by about 12 to 28 days in El Niño and was earlier about 8 to 22 days in La Niña. Corresponding to these shifts in SOS and LOS of both DDF and MDF were also induced by the El Niño–Southern Oscillation (ENSO).


Author(s):  
Claudia Canedo-Rosso ◽  
Stefan Hochrainer-Stigler ◽  
Georg Pflug ◽  
Bruno Condori ◽  
Ronny Berndtsson

Abstract. Drought is a major natural hazard in the Bolivian Altiplano that causes large losses to farmers, especially during positive ENSO phases. However, empirical data for drought risk estimation purposes are scarce and spatially uneven distributed. Due to these limitations, similar to many other regions in the world, we tested the performance of satellite imagery data for providing precipitation and temperature data. The results show that droughts can be better predicted using a combination of satellite imagery and ground-based available data. Consequently, the satellite climate data were associated with the Normalized Difference Vegetation Index (NDVI) in order to evaluate the crop production variability. Moreover, NDVI was used to target specific drought hotspot regions. Furthermore, during positive ENSO phase (El Niño years), a significant decrease in crop yields can be expected and we indicate areas where losses will be most pronounced. The results can be used for emergency response operations and enable a pro-active approach to disaster risk management against droughts. This includes economic-related and risk reduction strategies such as insurance and irrigation.


2005 ◽  
Vol 9 (25) ◽  
pp. 1-16
Author(s):  
Miles G. Logsdon ◽  
Robin Weeks ◽  
Milton Smith ◽  
Jeffery E. Richey ◽  
Victoria Ballester ◽  
...  

Abstract In the Amazon basin, seasonal and interannual spectral changes measured by satellites result from anthropogenic disturbance and from the interaction between climate variation and the surface cover. Measurements of spectral change, and the characterization of that change, provide information concerning the physical processes evident at this mesoscale. A 17-yr sequence of daily Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) images were analyzed to produce a monthly record of surface spectral change encompassing El Niño–Southern Oscillation (ENSO) cycles. Monthly cloud-free composite images from daily AVHRR data were produced by linear filters that minimized the finescale spatial variance and allowed for a wide range analysis within a consistent mathematical framework. Here the use of a minimized local variance (MLV) filter that produced spatially smooth images in which major land-cover boundaries and spatial gradients are clearly represented is discussed. Changes in the configuration of these boundaries and the composition of the landscape elements they defined are described in terms of quantitative changes in landscape pattern. The time series produced with the MLV filter revealed a marked seasonal difference in the pattern of the landscape and structural differences over the length of the time series. Strikingly, the response of the region to drier El Niño years appears to be delayed in the MLV series, the maximum response being in the year following El Niño with little or no change seen during El Niño.


2019 ◽  
Vol 19 (21) ◽  
pp. 13535-13546
Author(s):  
Nils Madenach ◽  
Cintia Carbajal Henken ◽  
René Preusker ◽  
Odran Sourdeval ◽  
Jürgen Fischer

Abstract. A total of 14 years (September 2002 to September 2016) of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) monthly mean cloud data are used to quantify possible changes in the cloud vertical distribution over the tropical Atlantic. For the analysis multiple linear regression techniques are used. For the investigated time period significant linear changes were found in the domain-averaged cloud-top height (CTH) (−178 m per decade), the high-cloud fraction (HCF) (−0.0006 per decade), and the low-cloud amount (0.001 per decade). The interannual variability of the time series (especially CTH and HCF) is highly influenced by the El Niño–Southern Oscillation (ENSO). Separating the time series into two phases, we quantified the linear change associated with the transition from more La Niña-like conditions to a phase with El Niño conditions (Phase 2) and vice versa (Phase 1). The transition from negative to positive ENSO conditions was related to a decrease in total cloud fraction (TCF) (−0.018 per decade; not significant) due to a reduction in the high-cloud amount (−0.024 per decade; significant). Observed anomalies in the mean CTH were found to be mainly caused by changes in HCF rather than by anomalies in the height of cloud tops themselves. Using the large-scale vertical motion ω at 500 hPa (from ERA-Interim ECMWF reanalysis data), the observed anomalies were linked to ENSO-induced changes in the atmospheric large-scale dynamics. The most significant and largest changes were found in regions with strong large-scale upward movements near the Equator. Despite the fact that with passive imagers such as MODIS it is not possible to vertically resolve clouds, this study shows the great potential for large-scale analysis of possible changes in the cloud vertical distribution due to the changing climate by using vertically resolved cloud cover and linking those changes to large-scale dynamics using other observations or model data.


2006 ◽  
Vol 19 (24) ◽  
pp. 6433-6438 ◽  
Author(s):  
Edgar G. Pavia ◽  
Federico Graef ◽  
Jorge Reyes

Abstract The role of the Pacific decadal oscillation (PDO) in El Niño–Southern Oscillation (ENSO)-related Mexican climate anomalies during winter and summer is investigated. The precipitation and mean temperature data of approximately 1000 stations throughout Mexico are considered. After sorting ENSO events by warm phase (El Niño) and cold phase (La Niña) and prevailing PDO phase: warm or high (HiPDO) and cold or low (LoPDO), the authors found the following: 1) For precipitation, El Niño favors wet conditions during summers of LoPDO and during winters of HiPDO. 2) For mean temperature, cooler conditions are favored during La Niña summers and during El Niño winters, regardless of the PDO phase; however, warmer conditions are favored by the HiPDO during El Niño summers.


2014 ◽  
Vol 22 (3) ◽  
pp. 211-221
Author(s):  
Janice Freitas Leivas ◽  
Ricardo Guimarães Andrade ◽  
Daniel De Castro Victoria ◽  
Fabio Enrique Torresan ◽  
Edson Luis Bolfe

A seca afeta várias partes do mundo e provoca impactos sociais, econômicos e ambientais. O objetivo deste estudo foi avaliar o comportamento do Índice de Vegetação Padronizado (IVP), obtido a partir do produto NDVI (Normalized Difference Vegetation Index) decendial do satélite SPOT-Vegetation, para o monitoramento da seca no nordeste brasileiro, a partir da série histórica de 1998 a 2012. Para subsidiar os resultados foi realizada a padronização dos dados de precipitação obtidos do satélite TRMM (Tropical Rainfall Measuring Mission), de março de 2011 a março de 2012. A partir de dezembro de 2011, observa-se que a precipitação ficou abaixo do normal na maior parte do nordeste brasileiro, acarretando diminuição do IVP em toda a região estudada. Fatores como o posicionamento da Zona de Convergência Intertropical e El Niño influenciaram no regime de chuvas da região. Os resultados são satisfatórios, indicando a ocorrência de intensa seca no nordeste brasileiro, sendo observada variabilidade do IVP e defasagem na resposta da vegetação à precipitação estimada a partir do TRMM. As análises comprovam que o IVP mostrou-se eficaz no monitoramento das secas na região nordeste do Brasil.


Sign in / Sign up

Export Citation Format

Share Document