scholarly journals Tropical Cyclone Activity in the Fiji Region: Spatial Patterns and Relationship to Large-Scale Circulation

2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.

Author(s):  
Edward Maru ◽  
Taiga Shibata ◽  
Kosuke Ito

This paper examines the tropical cyclone (TC) activity in Solomon Islands (SI) using the best track data from Tropical Cyclone Warning Centre Brisbane and Regional Specialized Meteorological Centre Nadi. The long-term trend analysis showed that the frequency of TCs has been decreasing in this region while average TC intensity becomes strong. Then, the datasets were classified according to the phase of Madden-Julian Oscillation (MJO) and the index of El Nino Southern Oscillation (ENSO) provided by Bureau of Meteorology. The MJO has sufficiently influenced TC activity in the SI region with more genesis occurring in phases 6-8, in which the lower outgoing longwave radiation indicates enhanced convective activity. In contrast, TC genesis occurs less frequently in phases 1, 2, and 5. As for the influence of ENSO, more TCs are generated in El Nino period. The TC genesis locations during El Nino (La Nina) period were significantly displaced to the north (south) over SI region. TCs generated during El Nino condition tended to be strong. This paper also argues the modulation in terms of seasonal climatic variability of large-scale environmental conditions such as sea surface temperature, low level relative vorticity, vertical wind shear, and upper level divergence.


2021 ◽  
Author(s):  
Chaoming Huang ◽  
Hailong Liu ◽  
Xidong Wang ◽  
Juncheng Zuo ◽  
Ruyun Wang

Abstract Major hurricanes (MHs) in the eastern North Pacific (ENP) in 1970-2018 were clustered into 3 categories with different quantity, intensity, lifetime, translation speed, track and large-scale environmental fields. MHs in all three clusters are more active in the Pacific Decadal Oscillation (PDO) warm phase than cold phase period. There are two clusters that their relationship with El Niño Southern Oscillation (ENSO) were modulated by PDO. The first cluster generates and develops in the open ocean and has an increasing trend of annual frequency, which is more active during El Niño years than during La Niña years in the PDO cold phase, but equally active in the PDO warm phase. The second cluster generates in the nearshore and translate rapidly into the ocean, which is more active during La Niña years than during El Niño years in the PDO warm phase, but equally active in the PDO cold phase. The PDO modulation mainly result from that MHs are obviously active during La Niña years in the PDO warm phase, which can be explained by local warming sea surface temperature, lower vertical wind shear, increasing vorticity and weakening sinking branch of circulation like Hadley cell. Therefore, PDO modulation cannot be ignored when predict the activity of tropical cyclone in ENP, especially for MHs that enters the open ocean and threat the islands such as the Hawaiian Islands.


2013 ◽  
Vol 26 (2) ◽  
pp. 600-608 ◽  
Author(s):  
Savin S. Chand ◽  
John L. McBride ◽  
Kevin J. Tory ◽  
Matthew C. Wheeler ◽  
Kevin J. E. Walsh

Abstract The influence of different types of ENSO on tropical cyclone (TC) interannual variability in the central southwest Pacific region (5°–25°S, 170°E–170°W) is investigated. Using empirical orthogonal function analysis and an agglomerative hierarchical clustering of early tropical cyclone season Pacific sea surface temperature, years are classified into four separate regimes (i.e., canonical El Niño, canonical La Niña, positive-neutral, and negative-neutral) for the period between 1970 and 2009. These regimes are found to have a large impact on TC genesis over the central southwest Pacific region. Both the canonical El Niño and the positive-neutral years have increased numbers of cyclones, with an average of 4.3 yr−1 for positive-neutral and 4 yr−1 for canonical El Niño. In contrast, during a La Niña and negative-neutral events, substantially fewer TCs (averages of ~2.2 and 2.4 yr−1, respectively) are observed in the central southwest Pacific. The enhancement of TC numbers in both canonical El Niño and positive-neutral years is associated with the extension of favorable low-level cyclonic relative vorticity, and low vertical wind shear eastward across the date line. Relative humidity and SST are also very conducive for genesis in this region during canonical El Niño and positive-neutral events. The patterns are quite different, however, with the favorable conditions concentrated in the date line region for the positive-neutral, as compared with conditions farther eastward for the canonical El Niño regime. A significant result of the study is the demonstration that ENSO-neutral events can be objectively clustered into two separate regimes, each with very different impacts on TC genesis.


2018 ◽  
Vol 31 (12) ◽  
pp. 4949-4961 ◽  
Author(s):  
Jau-Ming Chen ◽  
Ching-Hsuan Wu ◽  
Pei-Hsuan Chung ◽  
Chung-Hsiung Sui

Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis ( PTCG) from the developing (TC d) and nondeveloping (TC n) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TC d is defined as PTCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological PTCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [~31 (100 days)−1]. However, PTCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive) MJO, and El Niño (La Niña) years. PTCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased PTCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased PTCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate PTCG, when compared with vertical wind shear and 700-hPa relative humidity.


2011 ◽  
Vol 24 (15) ◽  
pp. 4096-4108 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variation in tropical cyclone (TC) intensity for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga (FST) region. The variation in TC intensity is inferred from the accumulated cyclone energy (ACE), which is constructed from the 6-hourly Joint Typhoon Warning Center best-track data for the period 1985–2006. Overall, results suggest that ACE in the FST region is considerably influenced by the ENSO signal. A substantial contribution to this ENSO signal in ACE comes from the region equatorward of 15°S where TC numbers, lifetime, and intensity all play a significant role. However, the ACE–ENSO relationship weakens substantially poleward of 15°S where large-scale environmental variables affecting TC intensity are found to be less favorable during El Niño years than during La Niña years; in the region equatorward of 15°S, the reverse is true. Therefore, TCs entering this region poleward of 15°S are able to sustain their intensity for a longer period of time during La Niña years as opposed to TCs entering the region during El Niño years, when they decay more rapidly.


2009 ◽  
Vol 27 (6) ◽  
pp. 2523-2538 ◽  
Author(s):  
Y. Kuleshov ◽  
F. Chane Ming ◽  
L. Qi ◽  
I. Chouaibou ◽  
C. Hoareau ◽  
...  

Abstract. Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC) archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Niño-Southern Oscillation (ENSO) phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs), relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Niña events compared to El Niño events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Niña seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western) part of the basin as well as for the northeast (southwest) shift of points of cyclogenesis during El Niño (La Niña) events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables.


2016 ◽  
Vol 29 (10) ◽  
pp. 3675-3695 ◽  
Author(s):  
Tuantuan Zhang ◽  
Song Yang ◽  
Xingwen Jiang ◽  
Ping Zhao

Abstract The authors analyze the seasonal–interannual variations of rainfall over the Maritime Continent (MC) and their relationships with El Niño–Southern Oscillation (ENSO) and large-scale monsoon circulation. They also investigate the predictability of MC rainfall using the hindcast of the U.S. National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). The seasonal evolution of MC rainfall is characterized by a wet season from December to March and a dry season from July to October. The increased (decreased) rainfall in the wet season is related to the peak-decaying phase of La Niña (El Niño), whereas the increased (decreased) rainfall in the dry season is related to the developing phase of La Niña (El Niño), with an apparent spatial incoherency of the SST–rainfall relationship in the wet season. For extremely wet cases of the wet season, local warm SST also contributes to the above-normal rainfall over the MC except for the western area of the MC due to the effect of the strong East Asian winter monsoon. The CFSv2 shows high skill in predicting the main features of MC rainfall variations and their relationships with ENSO and anomalies of the large-scale monsoon circulation, especially for strong ENSO years. It predicts the rainfall and its related circulation patterns skillfully in advance by several months, especially for the dry season. The relatively lower skill of predicting MC rainfall for the wet season is partly due to the low prediction skill of rainfall over Sumatra, Malay, and Borneo (SMB), as well as the unrealistically predicted relationship between SMB rainfall and ENSO.


2017 ◽  
pp. 89 ◽  
Author(s):  
J. M. Valencia ◽  
C. E. García ◽  
D. Montero

<p>The main factors affecting the production and yield of sugarcane are variety, agronomic management, soil type and climate, of which the first three there is some control, while the climate is one factor of which you cannot have any control, therefore, it should be monitored. Colombia, being located in the equatorial pacific, is affected by two atmospheric oceanic phenomena known as “El Niño” and “La Niña”, which make up the climatic phenomenon of ENSO (El Niño-Southern Oscillation) and affect the quantity and the number of days with rainfall and influences the production of sugarcane. The objective of this work is to identify spatially and temporally the zones with greater and lower impact of the ENSO phenomenon in the cultivation of sugarcane in Colombia through the use of the Standard Vegetation Index (SVI) and the Rainfall Anomally Index (RAI) using EVI/MODIS images and precipitation data from meteorological stations on a quarterly basis for the period 2000-2015. A similar trend was found between both indices in the “El Niño” and “Neutral” seasons, while in the “La Niña” season the RAI tended to rise while the SVI decreased when the RAI was very high, this tendency being much more marked in areas with floods caused by the overflow of the main rivers. In addition, a comparison was made between the SVI index and a productivity anomaly index (IAP), finding a direct correlation between both (R<sup>2</sup> = 0.4, p&lt;0.001). This work showed that through the use of vegetation indexes, a temporal analysis of the impact of climate on an agricultural crop can be carried out, especially with ENSO conditions.</p>


2016 ◽  
Vol 29 (5) ◽  
pp. 1877-1897 ◽  
Author(s):  
Irenea L. Corporal-Lodangco ◽  
Lance M. Leslie ◽  
Peter J. Lamb

Abstract This study investigates the El Niño–Southern Oscillation (ENSO) contribution to Philippine tropical cyclone (TC) variability, for a range of quarterly TC metrics. Philippine TC activity is found to depend on both ENSO quarter and phase. TC counts during El Niño phases differ significantly from neutral phases in all quarters, whereas neutral and La Niña phases differ only in January–March and July–September. Differences in landfalls between neutral and El Niño phases are significant in January–March and October–December and in January–March for neutral and La Niña phases. El Niño and La Niña landfalls are significantly different in April–June and October–December. Philippine neutral and El Niño TC genesis cover broader longitude–latitude ranges with similar long tracks, originating farther east in the western North Pacific. In El Niño phases, the mean eastward displacement of genesis locations and more recurving TCs reduce Philippine TC frequencies. Proximity of La Niña TC genesis to the Philippines and straight-moving tracks in April–June and October–December increase TC frequencies and landfalls. Neutral and El Niño accumulated cyclone energy (ACE) values are above average, except in April–June of El Niño phases. Above-average quarterly ACE in neutral years is due to increased TC frequencies, days, and intensities, whereas above-average El Niño ACE in July–September is due to increased TC days and intensities. Below-average La Niña ACE results from fewer TCs and shorter life cycles. Longer TC durations produce slightly above-average TC days in July–September El Niño phases. Fewer TCs than neutral years, as well as shorter TC durations, imply less TC days in La Niña phases. However, above-average TC days occur in October–December as a result of higher TC frequencies.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The Earth's climate is constantly changing. Some of the changes are progressive, while others fluctuate at various time scales. The El Niño-la Niña cycle is one such fluctuation that recurs every few years and has far-reaching impacts. It generally appears at least once per decade, but this may vary with our changing climate. The exact frequency, sequence, duration and intensity of El Niño's manifestations, as well as its effects and geographic distributions, are highly variable. The El Niño-la Niña cycle is particularly challenging to study due to its many interlinked phenomena that occur in various locations around the globe. These worldwide teleconnections are precisely what makes studying El Niño-la Niña so important. Cynthia Rosenzweig and Daniel Hillel describe the current efforts to develop and apply a global-to-regional approach to climate-risk management. They explain how atmospheric and social scientists are cooperating with agricultural practitioners in various regions around the world to determine how farmers may benefit most from new climate predictions. Specifically, the emerging ability to predict the El Niño-Southern Oscillation (ENSO) cycle offers the potential to transform agricultural planning worldwide. Biophysical scientists are only now beginning to recognize the large-scale, globally distributed impacts of ENSO on the probabilities of seasonal precipitation and temperature regimes. Meanwhile, social scientists have been researching how to disseminate forecasts more effectively within rural communities. Consequently, as the quality of climatic predictions have improved, the dissemination and presentation of forecasts have become more effective as well. This book explores the growing understanding of the interconnectedness of climate predictions and productive agriculture for sustainable development, as well as methods and models used to study this relationship.


Sign in / Sign up

Export Citation Format

Share Document