scholarly journals Equatorial Waves in Opposite QBO Phases

2011 ◽  
Vol 68 (4) ◽  
pp. 839-862 ◽  
Author(s):  
Gui-Ying Yang ◽  
Brian J. Hoskins ◽  
Julia M. Slingo

Abstract A methodology for identifying equatorial waves is used to analyze the multilevel 40-yr ECMWF Re-Analysis (ERA-40) data for two different years (1992 and 1993) to investigate the behavior of the equatorial waves under opposite phases of the quasi-biennial oscillation (QBO). A comprehensive view of 3D structures and of zonal and vertical propagation of equatorial Kelvin, westward-moving mixed Rossby–gravity (WMRG), and n = 1 Rossby (R1) waves in different QBO phases is presented. Consistent with expectation based on theory, upward-propagating Kelvin waves occur more frequently during the easterly QBO phase than during the westerly QBO phase. However, the westward-moving WMRG and R1 waves show the opposite behavior. The presence of vertically propagating equatorial waves in the stratosphere also depends on the upper tropospheric winds and tropospheric forcing. Typical propagation parameters such as the zonal wavenumber, zonal phase speed, period, vertical wavelength, and vertical group velocity are found. In general, waves in the lower stratosphere have a smaller zonal wavenumber, shorter period, faster phase speed, and shorter vertical wavelength than those in the upper troposphere. All of the waves in the lower stratosphere show an upward group velocity and downward phase speed. When the phase of the QBO is not favorable for waves to propagate, their phase speed in the lower stratosphere is larger and their period is shorter than in the favorable phase, suggesting Doppler shifting by the ambient flow and a filtering of the slow waves. Tropospheric WMRG and R1 waves in the Western Hemisphere also show upward phase speed and downward group velocity, with an indication of their forcing from middle latitudes. Although the waves observed in the lower stratosphere are dominated by “free” waves, there is evidence of some connection with previous tropical convection in the favorable year for the Kelvin waves in the warm water hemisphere and WMRG and R1 waves in the Western Hemisphere, which is suggestive of the importance of convective forcing for the existence of propagating coupled Kelvin waves and midlatitude forcing for the existence of coupled WMRG and R1 waves.

2013 ◽  
Vol 13 (8) ◽  
pp. 22607-22637 ◽  
Author(s):  
P. Maury ◽  
F. Lott

Abstract. To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby-gravity waves are also very close but significantly weaker than in observations. We demonstrate that this bias on the Rossby-gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward: during a westward phase of the QBO, the Rossby-gravity waves in ERA-Interim compare well with those in the model. These results suggest that in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering and the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions whereas in the ERA-Interim reanalysis the sources are more equatorial. We also show that non-equatorial sources are significant in reanalysis data, and we consider the case of the Rossby-gravity waves. We identify situations in the reanalysis where here are large Rossby-gravity waves in the middle stratosphere, and for dates when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a "stratospheric reloading".


2014 ◽  
Vol 14 (4) ◽  
pp. 1869-1880 ◽  
Author(s):  
P. Maury ◽  
F. Lott

Abstract. To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi-biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby gravity waves are also very similar but significantly weaker than in observations. We demonstrate that this bias on the Rossby gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward. During a westward phase of the QBO, the ERA-Interim Rossby gravity waves compare well with those in the model. These results suggest that (i) in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering, and (ii) the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions, whereas in the ERA-Interim reanalysis the sources are more equatorial. We show that non-equatorial sources are also significant in reanalysis data sets as they explain the presence of the Rossby gravity waves in the stratosphere. To illustrate this point, we identify situations with large Rossby gravity waves in the reanalysis middle stratosphere for dates selected when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a stratospheric reloading.


2018 ◽  
Vol 76 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Rolando R. Garcia ◽  
Jadwiga H. Richter

Abstract This study documents the contribution of equatorial waves and mesoscale gravity waves to the momentum budget of the quasi-biennial oscillation (QBO) in a 110-level version of the Whole Atmosphere Community Climate Model. The model has high vertical resolution, 500 m, above the boundary layer and through the lower and middle stratosphere, decreasing gradually to about 1.5 km near the stratopause. Parameterized mesoscale gravity waves and resolved equatorial waves contribute comparable easterly and westerly accelerations near the equator. Westerly acceleration by resolved waves is due mainly to Kelvin waves of zonal wavenumber in the range k = 1–15 and is broadly distributed about the equator. Easterly acceleration near the equator is due mainly to Rossby–gravity (RG) waves with zonal wavenumbers in the range k = 4–12. These RG waves appear to be generated in situ during both the easterly and westerly phases of the QBO, wherever the meridional curvature of the equatorial westerly jet is large enough to produce reversals of the zonal-mean barotropic vorticity gradient, suggesting that they are excited by the instability of the jet. The RG waves produce a characteristic pattern of Eliassen–Palm flux divergence that includes strong easterly acceleration close to the equator and westerly acceleration farther from the equator, suggesting that the role of the RG waves is to redistribute zonal-mean vorticity such as to neutralize the instability of the westerly jet. Insofar as unstable RG waves might be present in the real atmosphere, mixing due to these waves could have important implications for transport in the tropical stratosphere.


2016 ◽  
Vol 73 (12) ◽  
pp. 4711-4730 ◽  
Author(s):  
Marta Abalos ◽  
William J. Randel ◽  
Thomas Birner

Abstract The regions around the subtropical jets in the upper troposphere and lower stratosphere (UTLS) are characterized by strong isentropic stirring and mixing. In this work, the wave spectrum of the associated eddy tracer fluxes is examined using an artificial passive tracer advected on isentropes by the two-dimensional flow. The eddy diffusivity computed from the flux–gradient relation captures the main features of the mixing structure. Eddy transport in the UTLS is strongest in the summer hemisphere, and weak eddy fluxes are found at the core and poleward of the subtropical jets, especially in the winter hemisphere. There is an important contribution of stationary planetary equatorial Rossby waves in the tropical upper troposphere. The transient eddy tracer transport is primarily linked to medium-scale waves (wavenumbers ~4–7) breaking in the regions of weak westerlies around the subtropical jets and to planetary-scale waves at high latitudes. Phase-speed spectra for transient eddy fluxes show a close relationship of waves to the background zonal wind. In the deep tropics, traveling equatorial and Rossby waves of extratropical origin lead to cross-equatorial tracer transport throughout the upper troposphere. Interannual changes show that eddy tracer fluxes closely follow the shifts in the zonal winds associated with El Niño–Southern Oscillation and the quasi-biennial oscillation.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Chen-Jeih Pan ◽  
Shih-Sian Yang ◽  
Uma Das ◽  
Wei-Sheng Chen

The atmospheric Kelvin wave has been widely studied due to its importance in atmospheric dynamics. Since a long-term climatological study is absent in the literature, we have employed the two-dimensional fast Fourier transform (2D-FFT) method for the 40-year long-term reanalysis of the dataset, ERA-Interim, to investigate the properties of Kelvin waves with wavenumbers 1 (E1) and 2 (E2) at 6–24 days wave periods over the equatorial region of ±10° latitude between a 15 and 45 km altitude during the period 1979–2019. The spatio-temporal variations of the E1 and E2 wave amplitudes were compared to the information of stratospheric quasi-biennial oscillation (QBO), and the wave amplitudes were found to have an inter-QBO cycle variation that was related to sea surface temperature and convections, as well as an intra-QBO cycle variation that was caused by interactions between the waves and stratospheric mean flows. Also, the E1 waves with 6–10 day periods and the E2 waves with 6 days period were observed to penetrate the westerly regime of QBO, which has a thickness less than the vertical wavelengths of those waves, and the waves could further propagate upward to higher altitudes. In a case study of the period 2006–2013, the wave amplitudes showed a good correlation with the Niño 3.4 index, outgoing longwave radiation (OLR), and precipitation during 2006–2013, though this was not the case for the full time series. The present paper is the first report on the 40-year climatology of Kelvin waves, and the morphology of Kelvin waves will help us diagnose the anomalies of wave activity and QBO in the future.


2021 ◽  
Vol 893 (1) ◽  
pp. 012015
Author(s):  
P Wu ◽  
Y Fukutomi ◽  
K Kikuchi

Abstract This study examined the cause of a record torrential rain event over the western coast of Sumatra Island in March 2016. The influence of atmospheric equatorial waves (EWs) and the characteristics of the EWs were investigated. Analysis of the Japanese 55-year Reanalysis data (JRA-55) and precipitation data from the Global Precipitation Measurement (GPM) satellite showed that the event was caused by the combined effects of Kelvin waves, equatorial Rossby waves, and westward inertio-gravity (WIG) waves. An examination of the characteristics of the EWs revealed that the Kelvin waves had longitudinal scales of ~6,000 km, with a period of ~6 days and phase speed of ~12 m s-1, which was typical of the convectively coupled Kelvin waves in this region. The WIG waves had a scale of ~2,500 km, with a period of 2.5 days and a relatively fast phase speed of 12~13 m s-1. Heavy precipitation occurred when an eastward Kelvin wave from the Indian Ocean encountered a westward inertio-gravity (WIG) over Sumatra Island. It was concluded that along with the Kelvin and equatorial Rossby waves, the WIG waves might have played a major role in the formation of the extreme precipitation event.


2012 ◽  
Vol 12 (4) ◽  
pp. 1865-1879 ◽  
Author(s):  
R. N. Davis ◽  
Y.-W. Chen ◽  
S. Miyahara ◽  
N. J. Mitchell

Abstract. Wind measurements from a meteor radar on Ascension Island (8° S, 14° W) and simultaneous temperature measurements from the Aura MLS instrument are used to characterise ultra-fast Kelvin waves (UFKW) of zonal wavenumber 1 (E1) in the mesosphere and lower thermosphere (MLT) in the years 2005–2010. These observations are compared with some predictions of the Kyushu-general circulation model. Good agreement is found between observations of the UFKW in the winds and temperatures, and also with the properties of the waves in the Kyushu-GCM. UFKW are found at periods between 2.5–4.5 days with amplitudes of up to 40 m s−1 in the zonal winds and 6 K in the temperatures. The average vertical wavelength is found to be 44 km. Amplitudes vary with latitude in a Gaussian manner with the maxima centred over the equator. Dissipation of the waves results in monthly-mean eastward accelerations of 0.2–0.9 m s−1 day−1 at heights around 95 km, with 5-day mean peak values of 4 m s−1 day−1. Largest wave amplitudes and variances are observed over Indonesia and central Africa and may be a result of very strong moist convective heating over those regions. Rainfall data from TRMM are used as a proxy for latent-heat release in an investigation of the excitation of these waves. No strong correlation is found between the occurrence of large-amplitude mesospheric UFKW events and either the magnitude of the equatorial rainfall or the amplitudes of E1 signatures in the rainfall time series, indicating that either other sources or the propagation environment are more important in determining the amplitude of UFKW in the MLT. A strong semiannual variation in wave amplitudes is observed. Intraseasonal oscillations (ISOs) with periods 25–60 days are evident in the zonal background winds, zonal-mean temperature, UFKW amplitudes, UFKW accelerations and the rainfall rate. This suggests that UFKW play a role in carrying the signature of tropospheric ISOs to the MLT region.


2014 ◽  
Vol 71 (8) ◽  
pp. 2878-2885 ◽  
Author(s):  
Ming Cai ◽  
Cory Barton ◽  
Chul-Su Shin ◽  
Jeffrey M. Chagnon

Abstract The continuous mutual evolution of equatorial waves and the background quasi-biennial oscillation (QBO) is demonstrated using daily NCEP–U.S. Department of Energy (DOE) reanalysis for the period from 1 January 1979 to 31 December 2010. Using a novel diagnostic technique, the phase speed, vertical tilting, and form stress of equatorial waves in the stratosphere are obtained continuously on a daily basis. The results indicate that, on top of a weak-amplitude annual-cycle signal, all of these wave properties have a pronounced QBO signal with a downward propagation that evolves continuously together with the background QBO. The analysis also highlights the potential role of wave-induced form stress in driving the QBO regime change. Dominant waves in the equatorial stratosphere propagate very slowly relative to the ground at all times, implying that their observed intrinsic phase speed evolution follows the background QBO nearly exactly but with opposite sign, as the established theory predicts. By revealing the continuous evolution of the form stress associated with the vertically tilted waves, the new diagnostic method also demonstrates the dominance of eastward-tilted, eastward-propagating waves contributing to a deceleration of easterly flow at high altitudes, which causes a downward propagation of the easterly flow signal. Similarly, the dominance of westward-tilted, westward-propagating waves acts to reverse westerly flow to easterly flow and causes a downward propagation of westerly flow signal. The results suggest that in addition to the wave-breaking processes, such continuously alternating downward transfer of westerly and easterly angular momentum by westward-tilted, westward-propagating waves and eastward-tilted, eastward-propagating waves contributes to the wave–mean flow interaction mechanism for the QBO.


2006 ◽  
Vol 19 (20) ◽  
pp. 5253-5272 ◽  
Author(s):  
Paul E. Roundy ◽  
George N. Kiladis

Abstract The Madden–Julian oscillation (MJO) has been implicated as a major source of the wind stress variability that generates basin-scale Kelvin waves in the equatorial Pacific. One source of debate concerning this relationship is the apparent difference in the frequencies of the two processes. This work utilizes data from the Tropical Atmosphere Ocean (TAO) array of moored buoys along with outgoing longwave radiation data to show by means of a multiple linear regression model and case studies that the frequency discrepancy is due to a systematic decrease in the phase speeds of the Kelvin waves and an increase in the period of the waves toward the east as conditions adjust toward El Niño. Among the potential contributing factors to this phase speed decrease is an apparent air–sea interaction that enhances the wind forcing of some of the Kelvin waves, allowing them to continue to amplify because the propagating wind stress anomaly decelerates to the speed of the developing Kelvin wave instead of the significantly faster speed of the typical MJO. Kelvin waves appear to be most effectively amplified during periods when the temperature gradient above the thermocline across the equatorial central Pacific is strong, the thermocline shoals steeply toward the east in the central Pacific, and/or when the phase speed of the propagating wind stress forcing is closest to that of the Kelvin wave. These conditions tend to occur as the ocean adjusts toward El Niño. Since Kelvin waves are instrumental to the development of El Niño events, isolating the detailed relationship between the waves and the MJO will lead to a better understanding of interannual ocean–atmosphere interactions.


2016 ◽  
Vol 73 (3) ◽  
pp. 913-941 ◽  
Author(s):  
Ángel F. Adames ◽  
Daehyun Kim

Abstract A linear wave theory for the Madden–Julian oscillation (MJO), previously developed by Sobel and Maloney, is extended upon in this study. In this treatment, column moisture is the only prognostic variable and the horizontal wind is diagnosed as the forced Kelvin and Rossby wave responses to an equatorial heat source/sink. Unlike the original framework, the meridional and vertical structure of the basic equations is treated explicitly, and values of several key model parameters are adjusted, based on observations. A dispersion relation is derived that adequately describes the MJO’s signal in the wavenumber–frequency spectrum and defines the MJO as a dispersive equatorial moist wave with a westward group velocity. On the basis of linear regression analysis of satellite and reanalysis data, it is estimated that the MJO’s group velocity is ~40% as large as its phase speed. This dispersion is the result of the anomalous winds in the wave modulating the mean distribution of moisture such that the moisture anomaly propagates eastward while wave energy propagates westward. The moist wave grows through feedbacks involving moisture, clouds, and radiation and is damped by the advection of moisture associated with the Rossby wave. Additionally, a zonal wavenumber dependence is found in cloud–radiation feedbacks that cause growth to be strongest at planetary scales. These results suggest that this wavenumber dependence arises from the nonlocal nature of cloud–radiation feedbacks; that is, anomalous convection spreads upper-level clouds and reduces radiative cooling over an extensive area surrounding the anomalous precipitation.


Sign in / Sign up

Export Citation Format

Share Document