North Pacific Decadal Variability and Climate Change in the IPCC AR4 Models

2011 ◽  
Vol 24 (12) ◽  
pp. 3049-3067 ◽  
Author(s):  
Jason C. Furtado ◽  
Emanuele Di Lorenzo ◽  
Niklas Schneider ◽  
Nicholas A. Bond

Abstract The two leading modes of North Pacific sea surface temperature (SST) and sea level pressure (SLP), as well as their connections to tropical variability, are explored in the 24 coupled climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) to evaluate North Pacific decadal variability (NPDV) in the past [twentieth century; climate of the twentieth century (20C3M) scenario] and future [twenty-first century; Special Report on Emissions Scenarios (SRES) A1B scenario] climate. Results indicate that the two dominant modes of North Pacific oceanic variability, the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), do not exhibit significant changes in their spatial and temporal characteristics under greenhouse warming. However, the ability of the models to capture the dynamics associated with the leading North Pacific oceanic modes, including their link to the corresponding atmospheric forcing patterns and to tropical variability, is questionable. The temporal and spatial statistics of the North Pacific Ocean modes exhibit significant discrepancies from observations in their twentieth-century climate, most visibly for the second mode, which has significantly more low-frequency power and higher variance than in observations. The dynamical coupling between the North Pacific Ocean and atmosphere modes evident in the observations is very strong in the models for the first atmosphere–ocean coupled mode, which represents covariability of the PDO pattern with the Aleutian low (AL). However, the link for the second atmosphere–ocean coupled mode, describing covariability of an NPGO-like SST pattern with the North Pacific Oscillation (NPO), is not as clearly reproduced, with some models showing no relationship between the two. Exploring the tropical Pacific–North Pacific teleconnections reveals more issues with the models. In contrast with observations, the atmospheric teleconnection excited by the El Niño–Southern Oscillation in the models does not project strongly on the AL–PDO coupled mode because of the displacement of the center of action of the AL in most models. Moreover, most models fail to show the observational connection between El Niño Modoki–central Pacific warming and NPO variability in the North Pacific. In fact, the atmospheric teleconnections associated with El Niño Modoki in some models have a significant projection on, and excite the AL–PDO coupled mode instead. Because of the known links between tropical Pacific variability and NPDV, these analyses demonstrate that focus on the North Pacific variability of climate models in isolation from tropical dynamics is likely to lead to an incomplete view, and inadequate prediction, of NPDV.

2020 ◽  
Vol 33 (23) ◽  
pp. 9985-10002
Author(s):  
Ruyan Chen ◽  
Isla R. Simpson ◽  
Clara Deser ◽  
Bin Wang

AbstractThe wintertime ENSO teleconnection over the North Pacific region consists of an intensified (weakened) low pressure center during El Niño (La Niña) events both in observations and in climate models. Here, it is demonstrated that this teleconnection persists too strongly into late winter and spring in the Community Earth System Model (CESM). This discrepancy arises in both fully coupled and atmosphere-only configurations, when observed SSTs are specified, and is shown to be robust when accounting for the sampling uncertainty due to internal variability. Furthermore, a similar problem is found in many other models from piControl simulations of the Coupled Model Intercomparison Project (23 out of 43 in phase 5 and 11 out of 20 in phase 6). The implications of this bias for the simulation of surface climate anomalies over North America are assessed. The overall effect on the ENSO composite field (El Niño minus La Niña) resembles an overly prolonged influence of ENSO into the spring with anomalously high temperatures over Alaska and western Canada, and wet (dry) biases over California (southwest Canada). Further studies are still needed to disentangle the relative roles played by diabatic heating, background flow, and other possible contributions in determining the overly strong springtime ENSO teleconnection intensity over the North Pacific.


2007 ◽  
Vol 20 (4) ◽  
pp. 667-680 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Axel Timmermann ◽  
In-Sik Kang ◽  
Oliver Timm

Abstract This diagnostic study explores the generation of decadal variability in the North Pacific resulting from the asymmetry of the El Niño–Southern Oscillation phenomenon and the nonlinearity of the atmospheric tropical–extratropical teleconnection. Nonlinear regression analysis of the North Pacific sea surface temperatures and atmospheric fields with respect to the ENSO index reveals that the main teleconnection centers shift between El Niño and La Niña years. This asymmetry in the ENSO response, together with the skewed probabilistic distribution of ENSO itself, may contribute to the generation of the long-term decadal variability of sea surface temperatures in the extratropical North Pacific. It is argued that this hypothesis may explain the significant variance of the observed Pacific decadal oscillation in the extratropics.


2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


2009 ◽  
Vol 137 (11) ◽  
pp. 3771-3785 ◽  
Author(s):  
Yafei Wang ◽  
Anthony R. Lupo

Abstract Using data for the month of June from 1951 through 2000, this study examined the air–sea interactions over the North Pacific after El Niño matured during the preceding fall season. The principal findings of this work are the following: 1) a coherent region near the international date line (IDL) in the extratropical North Pacific revealed an area of significant negative correlations (SNCs) between the preceding November sea surface temperature (SST) in the Niño-3 region and the June SST in the North Pacific. Also, two indexes of the June Okhotsk high show a significant positive correlation with the November SST in the Niño-3 region during the 1963–2000 period. 2) The strong southeastward wave flux from the upstream area of the Okhotsk Sea over much of the North Pacific in the midlatitudes is associated with a strong preceding El Niño event, the development of the Okhotsk high, and a negative 500-hPa geopotential height/SST anomaly around the coherent region. The stationary wave propagation plays a major part in maintaining the low SSTs in the coherent region and suppressing the northward progress of the subtropical high. This process partially bridges the connection between the central equatorial Pacific warming (CEPW) and the East Asian summer monsoon. 3) A wave train–like anomaly in the SST (tilted northwest–southeast) was established and maintained in the North Pacific during the summer of 1998. This coincided with the direction of the atmospheric Rossby wave propagation as the strong southeastward wave flux was scattered over the midlatitude North Pacific. This event provides solid evidence that Rossby wave propagation plays an important role in forming an oceanic temperature wave train in the extratropical Pacific through the barotropic process.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2010 ◽  
Vol 3 (11) ◽  
pp. 762-765 ◽  
Author(s):  
E. Di Lorenzo ◽  
K. M. Cobb ◽  
J. C. Furtado ◽  
N. Schneider ◽  
B. T. Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document