anomalous atmospheric circulation
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 194 ◽  
pp. 110626
Author(s):  
A. Sanchez-Lorenzo ◽  
J. Vaquero-Martínez ◽  
J. Calbó ◽  
M. Wild ◽  
A. Santurtún ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 855-873
Author(s):  
Kathrin Wehrli ◽  
Mathias Hauser ◽  
Sonia I. Seneviratne

Abstract. Extreme temperatures were experienced over a large part of the Northern Hemisphere during the 2018 boreal summer (hereafter referred to as “NH2018 event”), leading to major impacts on agriculture and society in the affected countries. Previous studies highlighted both the anomalous atmospheric circulation patterns during the event and the background warming due to human greenhouse gas emissions as main drivers of the event. In this study, we present Earth system model experiments investigating different storylines of the NH2018 event given the same atmospheric circulation and alternative background global warming for no human imprint, the 2018 conditions, and different mean global warming levels 1.5, 2, 3 and 4 ∘C. The results reveal that the human-induced background warming was a strong contributor to the intensity of the NH2018 event, and that resulting extremes under similar atmospheric circulation conditions at higher levels of global warming would reach dangerous levels. Compared to 9 % during the NH2018 event, about 13 % (34 %) of the inhabited or agricultural area in the investigated region would reach daily maximum temperatures over 40 ∘C under 2 ∘C (4 ∘C) of global warming and similar atmospheric circulation conditions.


Author(s):  
Arturo Sanchez-Lorenzo ◽  
Javier Vaquero-Martínez ◽  
Josep Calbó ◽  
Martin Wild ◽  
Ana Santurtún ◽  
...  

AbstractThe current pandemic caused by the coronavirus SARS-CoV-2 is having negative health, social and economic consequences worldwide. In Europe, the pandemic started to develop strongly at the end of February and beginning of March 2020. It has subsequently spread over the continent, with special virulence in northern Italy and inland Spain. In this study we show that an unusual persistent anticyclonic situation prevailing in southwestern Europe during February 2020 (i.e. anomalously strong positive phase of the North Atlantic and Arctic Oscillations) could have resulted in favorable conditions, in terms of air temperature and humidity, in Italy and Spain for a quicker spread of the virus compared with the rest of the European countries. It seems plausible that the strong atmospheric stability and associated dry conditions that dominated in these regions may have favored the virus’s propagation, by short-range droplet transmission as well as likely by long-range aerosol (airborne) transmission.


2020 ◽  
Author(s):  
Kathrin Wehrli ◽  
Mathias Hauser ◽  
Sonia I. Seneviratne

<p>The 2018 summer was unusually hot in large areas of the Northern Hemisphere and simultaneous heat waves on three continents led to major impacts to agriculture and society. The event was driven by the anomalous atmospheric circulation pattern during that summer and it was only possible in a climate with global warming. There are indications that in a future, warmer climate similar events might occur regularly, affecting major ‘breadbasket’ regions of the Northern Hemisphere.</p><p>This study aims to understand the role of climate change for driving the intensity of the 2018 summer and to explore the sensitivity to changing warming levels. Model simulations are performed using the Community Earth System Model to investigate storylines for the extreme 2018 summer given the observed atmospheric large-scale circulation but different levels of background global warming: no human imprint, the 2018 conditions, and different mean global warming levels (1.5°C, 2°C, 3°C, and 4°C). The storylines explore the consequences of the event in an alternative warmer or colder world and thus help to increase our understanding of the drivers involved. The results reveal a strong contribution by the present-day level of global warming and provide an outlook to similar events in a possible future climate.</p>


2020 ◽  
Author(s):  
Kathrin Wehrli ◽  
Mathias Hauser ◽  
Sonia I. Seneviratne

Abstract. Extreme temperatures were experienced over a large part of the Northern Hemisphere during the 2018 boreal summer (hereafter referred to as NH2018 event), leading to major impacts to agriculture and society in the affected countries. Previous studies highlighted both the anomalous atmospheric circulation patterns during the event and the background warming due to human greenhouse gas emissions as main drivers for the event. In this study, we present Earth System Model experiments investigating different storylines of the NH2018 event given the same atmospheric circulation and alternative background global warming for: no human imprint, the 2018 conditions, and different mean global warming levels (1.5 °C, 2 °C, 3 °C, and 4 °C). The results reveal that the human-induced background warming was a strong contributor to the intensity of the NH2018 event, and that resulting extremes under similar atmospheric circulation conditions at higher levels of global warming would reach very dangerous levels. About 32 % (61 %) of the inhabited or agricultural area in the investigated region would reach maximum temperatures over 40 °C under 2 °C (4 °C) of global warming and similar atmospheric circulation conditions.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 217-248 ◽  
Author(s):  
R. Döscher ◽  
T. Koenigk

Abstract. Rapid sea ice loss events (RILEs) in a mini-ensemble of regional Arctic coupled climate model scenario experiments are analyzed. Mechanisms of sudden ice loss are strongly related to atmospheric circulation conditions and preconditioning by sea ice thinning during the seasons and years before the event. Clustering of events in time suggests a strong control by large-scale atmospheric circulation. Anomalous atmospheric circulation is providing warm air anomalies of up to 5 K and is forcing ice flow, affecting winter ice growth. Even without a seasonal preconditioning during winter, ice drop events can be initiated by anomalous inflow of warm air during summer. It is shown that RILEs can be generated based on atmospheric circulation changes as a major driving force without major competing mechanisms, other than occasional longwave effects during spring and summer. Other anomalous seasonal radiative forcing or short-lived forcers (e.g., soot) play minor roles or no role at all in our model. RILEs initiated by ocean forcing do not occur in the model, although cannot be ruled out due to model limitations. Mechanisms found are qualitatively in line with observations of the 2007 RILE.


Sign in / Sign up

Export Citation Format

Share Document