On the Growth and Decay of the Subtropical Dipole Mode in the South Atlantic
Abstract Using observational data and outputs from an ocean general circulation model, the growth and decay of the South Atlantic subtropical dipole (SASD) are studied. The SASD is the most dominant mode of interannual variability in the South Atlantic Ocean, and its sea surface temperature (SST) anomaly shows a dipole pattern that is oriented in the northeast–southwest direction. The positive (negative) pole develops because the warming of the mixed layer by the contribution from the climatological shortwave radiation is enhanced (suppressed) when the mixed layer is thinner (thicker) than normal. The mixed layer depth anomaly over the positive (negative) pole is due to the suppressed (enhanced) latent heat flux loss associated with the southward migration and strengthening of the subtropical high. During the decay phase, since the temperature difference between the mixed layer and the entrained water becomes anomalously large (small) as a result of the positive (negative) mixed layer temperature anomaly, the cooling of the mixed layer by the entrainment is enhanced (reduced). In addition, the cooling of the mixed layer by the contribution from the climatological latent heat flux is enhanced (suppressed) by the same thinner (thicker) mixed layer. This paper demonstrates the importance of taking into account the interannual variations of the mixed layer depth in discussing the growth and decay of SST anomalies associated with the SASD.