scholarly journals Predictability of the Atlantic Overturning Circulation and Associated Surface Patterns in Two CCSM3 Climate Change Ensemble Experiments

2011 ◽  
Vol 24 (23) ◽  
pp. 6054-6076 ◽  
Author(s):  
Haiyan Teng ◽  
Grant Branstator ◽  
Gerald A. Meehl

Abstract Predictability of the Atlantic meridional overturning circulation (AMOC) and associated oceanic and atmospheric fields on decadal time scales in the Community Climate System Model, version 3 (CCSM3) at T42 resolution is quantified with a 700-yr control run and two 40-member “perfect model” climate change experiments. After taking into account both the mean and spread about the mean of the forecast distributions and allowing for the possibility of time-evolving modes, the natural variability of the AMOC is found to be predictable for about a decade; beyond that range the forced predictability resulting from greenhouse gas forcing becomes dominant. The upper 500-m temperature in the North Atlantic is even more predictable than the AMOC by several years. This predictability is associated with subsurface and sea surface temperature (SST) anomalies that propagate in an anticlockwise direction along the subpolar gyre and tend to be prominent during the 10 yr following peaks in the amplitude of AMOC anomalies. Predictability in the North Atlantic SST mainly resides in the ensemble mean signals after three to four forecast years. Analysis suggests that in the CCSM3 the subpolar gyre SST anomalies associated with the AMOC variability can influence the atmosphere and produce surface climate predictability that goes beyond the ENSO time scale. However, the resulting initial-value predictability in the atmosphere is very weak.

2017 ◽  
Vol 30 (17) ◽  
pp. 6737-6755
Author(s):  
Bowen Zhao ◽  
Thomas Reichler ◽  
Courtenay Strong ◽  
Cecile Penland

The authors identify an interdecadal oscillatory mode of the North Atlantic atmosphere–ocean system in a general circulation model (GFDL CM2.1) via a linear inverse model (LIM). The oscillation mechanism is mostly embedded in the subpolar gyre: anomalous advection generates density anomalies in the eastern subpolar gyre, which propagate along the mean gyre circulation and reach the subpolar gyre center around 10 years later, when associated anomalous advection of the opposite sign starts the other half cycle. As density anomalies reach the Labrador Sea deep convection region, Atlantic meridional overturning circulation (AMOC) anomalies are also induced. Both the gyre and AMOC anomalies then propagate equatorward slowly, following the advection of density anomalies. The oscillation is further demonstrated to be more likely an ocean-only mode while excited by the atmospheric forcing; in particular, it can be approximated as a linearly driven damped oscillator that is partly excited by the North Atlantic Oscillation (NAO). The slowly evolving interdecadal oscillation significantly improves and prolongs the LIM’s prediction skill of sea surface temperature (SST) evolution.


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.


Sign in / Sign up

Export Citation Format

Share Document