scholarly journals Seasonal Variations of the Urban Heat Island at the Surface and the Near-Surface and Reductions due to Urban Vegetation in Mexico City

2012 ◽  
Vol 51 (5) ◽  
pp. 855-868 ◽  
Author(s):  
Yu Yan Cui ◽  
Benjamin de Foy

AbstractThe contrast of vegetation cover in urban and surrounding areas modulates the magnitude of the urban heat island (UHI). This paper examines the seasonal variations of the UHI using the Moderate Resolution Imaging Spectroradiometer (MODIS), surface meteorological observations, and the Weather Research and Forecasting (WRF) model. A distinction is made between the land surface UHI observed by satellite and the near-surface UHI observed by measuring the air temperature. The land surface UHI is found to be high at night throughout the year but drops during the wet season. The daytime UHI is low or even exhibits an urban cool island throughout the year but increases during the wet season. The near-surface air temperature UHI trend is similar to the land surface temperature UHI at night. By day, however, the air temperature UHI remains constant throughout the year. Regression analysis showed that the daytime land surface UHI correlates with the difference in vegetation fraction between the urban and surrounding areas, and, to a lesser extent, with daytime insolation. At night, the UHI correlates with nighttime atmospheric stability and only weakly with differences in vegetation cover and daytime insolation. WRF simulations with the single-layer Urban Canopy Model were initialized with MODIS data, especially for the urban fraction parameter. The simulations correctly represented the distinct seasonal variations of both types of UHIs. The model was used to test the impact of changes in vegetation fraction in the urban area, indicating that increased vegetation would reduce both the land surface UHI and the air temperature UHI at night, as well as the land surface UHI during the daytime.

2015 ◽  
Vol 54 (11) ◽  
pp. 2245-2259 ◽  
Author(s):  
Leiqiu Hu ◽  
Andrew J. Monaghan ◽  
Nathaniel A. Brunsell

AbstractExtreme heat is a leading cause of weather-related human mortality. The urban heat island (UHI) can magnify heat exposure in metropolitan areas. This study investigates the ability of a new MODIS-retrieved near-surface air temperature and humidity dataset to depict urban heat patterns over metropolitan Chicago, Illinois, during June–August 2003–13 under clear-sky conditions. A self-organizing mapping (SOM) technique is used to cluster air temperature data into six predominant patterns. The hottest heat patterns from the SOM analysis are compared with the 11-summer median conditions using the urban heat island curve (UHIC). The UHIC shows the relationship between air temperature (and dewpoint temperature) and urban land-use fraction. It is found that during these hottest events 1) the air temperature and dewpoint temperature over the study area increase most during nighttime, by at least 4 K relative to the median conditions; 2) the urban–rural temperature/humidity gradient is decreased as a result of larger temperature and humidity increases over the areas with greater vegetation fraction than over those with greater urban fraction; and 3) heat patterns grow more rapidly leading up to the events, followed by a slower return to normal conditions afterward. This research provides an alternate way to investigate the spatiotemporal characteristics of the UHI, using a satellite remote sensing perspective on air temperature and humidity. The technique has potential to be applied to cities globally and provides a climatological perspective on extreme heat that complements the many case studies of individual events.


2020 ◽  
Vol 12 (8) ◽  
pp. 1271 ◽  
Author(s):  
Tao Sun ◽  
Ranhao Sun ◽  
Liding Chen

The credible urban heat island (UHI) trend is crucial for assessing the effects of urbanization on climate. Land surface temperature (LST) and near surface air temperature (SAT) have been extensively used to obtain UHI intensities. However, the consistency of UHI trend between LST and SAT has rarely been discussed. This paper quantified the temporal stability and trend consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) LST and in situ SAT. Linear regressions, temporal trends and coefficients of variations (CV) were analyzed based on the yearly mean, maximum and minimum temperatures. The findings in this study were: (1) Good statistical consistency (R2 = 0.794) and the same trends were found only in mean temperature between LST-UHI and SAT-UHI. There are 54% of cities that showed opposite temporal trends between LST-UHI and SAT-UHI for minimum temperature while the percentage was 38% for maximum temperature. (2) The high discrepancies in temporal trends were observed for all cities, which indicated the inadequacy of LST for obtaining reliable UHI trends especially when using the maximum and minimum temperatures. (3) The larger uncertainties of LST-UHI were probably due to high inter-annual fluctuations of LST. The topography was the predominant factor that affected the UHI variations for both LST and SAT. Therefore, we suggested that SAT should be combined with LST to ensure the dependable temporal series of UHI. This paper provided references for understanding the UHI effects on various surfaces.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2020 ◽  
Author(s):  
Zheng Guo ◽  
Miaomiao Cheng

<p>Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter, which is a very important factor in the field of the urban thermal environmental. Nowadays, the research of urban thermal environment mainly focused on surface heat island and canopy heat island.</p><p>Based on analysis of the current status of city thermal environment. Firstly, a method was proposed to obtain near surface air temperature diurnal range in this study, difference of land surface temperature between day and night were introduced into the improved temperature vegetation index feature space based on remote sensing data. Secondly, compared with the district administrative division, we analyzed the spatial and temporal distribution characteristics of the diurnal range of land surface temperature and near surface air temperature.</p><p>The conclusions of this study are as follows:</p><p>1 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing were fluctuating upward. The rising trend of the near surface air temperature diurnal range was more significant than land surface temperature diurnal range. In addition, the rise and decline of land surface temperature and near surface air temperature diurnal range in different districts were different. In the six city districts, the land surface temperature and near surface air temperature diurnal range in the six areas of the city were mainly downward. The decline trend of near surface air temperature diurnal range was more significant than land surface temperature diurnal range.</p><p>2 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing with similar characteristics in spatial distribution, with higher distribution land surface temperature and near surface air temperature diurnal range in urban area and with lower distribution of land surface temperature and near surface air temperature diurnal range in the Northwest Mountainous area and the area of Miyun reservoir.</p>


2019 ◽  
Vol 34 (6) ◽  
pp. 1849-1865
Author(s):  
Francisco Salamanca Palou ◽  
Alex Mahalov

Abstract This paper examines summer- and wintertime variations of the surface and near-surface urban heat island (UHI) for the Phoenix metropolitan area using the Moderate Resolution Imaging Spectroradiometer (MODIS), near-surface meteorological observations, and the Weather Research and Forecasting (WRF) Model during a 31-day summer- and a 31-day wintertime period. The surface UHI (defined based on the urban–rural land surface temperature difference) is found to be higher at night and during the warm season. On the other hand, the morning surface UHI is low and frequently exhibits an urban cool island that increases during the summertime period. Similarly, the near-surface UHI (defined based on the urban–rural 2-m air temperature difference) is higher at night and during summertime. On the other hand, the daytime near-surface UHI is low but rarely exhibits an urban cool island. To evaluate the WRF Model’s ability to reproduce the diurnal cycle of near-surface meteorology and surface skin temperature, two WRF Model experiments (one using the Bougeault and Lacarrere turbulent scheme and one with the Mellor–Yamada–Janjić turbulent parameterization) at high spatial resolution (1-km horizontal grid spacing) are conducted for each 31-day period. Modeled results show that the WRF Model (coupled to the Noah-MP land surface model) tends to underestimate to some extent surface skin temperature during daytime and overestimate nighttime values during the wintertime period. In the same way, the WRF Model tends to accurately reproduce the diurnal cycle of near-surface air temperature, including maximum and minimum temperatures, and wind speed during summertime, but notably overestimates nighttime near-surface air temperature during wintertime. This nighttime overestimation is especially remarkable with the Bougeault and Lacarrere turbulent scheme for both urban and rural areas.


2011 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R. Hamdi ◽  
H. Van de Vyver

Abstract. In this letter, the Brussels's urban heat island (UHI) effect on the near-surface air temperature time series of Uccle (the national suburban recording station of the Royal Meteorological Institute of Belgium) was estimated between 1955 and 2006 during the summer months. The UHI of Brussels was estimated using both ground-based weather stations and remote sensing imagery combined with a land surface scheme that includes a state-of-the-art urban parameterization, the Town Energy Balance scheme. Analysis of urban warming based on the remote sensing method reveals that the urban bias on minimum air temperature is rising at a higher rate, 2.5 times (2.85 ground-based observed) more, than on maximum temperature, with a linear trend of 0.15 °C (0.19 °C ground-based observed) and 0.06 °C (0.06 °C ground-based observed) per decade respectively. The summer-mean urban bias on the mean air temperature is 0.8 °C (0.9 °C ground-based observed). The results based on remote sensing imagery are compatible with estimates of urban warming based on weather stations. Therefore, the technique presented in this work is a useful tool in estimating the urban heat island contamination in long time series, countering the drawbacks of an ground-observational approach.


2017 ◽  
Vol 56 (4) ◽  
pp. 817-831 ◽  
Author(s):  
J. A. Wang ◽  
L. R. Hutyra ◽  
D. Li ◽  
M. A. Friedl

AbstractCities are home to the majority of humanity. Therefore, understanding the mechanisms that control urban climates has substantial societal importance to a variety of sectors, including public health and energy management. In this study, data from an urban sensor network (25 stations) and moderate-resolution remote sensing were used to explore how spatial variation in near-surface air temperature Ta, vapor pressure deficit (VPD), and land surface temperature (LST) depend on local variations in urban land use, both diurnally and seasonally, in the Boston, Massachusetts, metropolitan area. Positive correlations were observed between the amount of local impervious surface area (ISA) and both Ta and VPD. Heat-island effects peaked during the growing-season nighttime, when mean Ta and VPD increased by up to 0.02°C and 0.008 kPa, respectively, per unit ISA. Air temperature and VPD were strongly coupled, but their relationship exhibited significant diurnal hysteresis during the growing season, with changes in VPD generally preceding changes in Ta. Over 79% of the urban–rural difference in VPD was explained by differences in near-surface atmospheric water content, which the authors attribute to reduced evapotranspiration from lower canopy cover in Boston’s urban core. Changes in daytime heat-island intensity were mediated by seasonal feedbacks between vegetation transpiration and VPD forcing. Differences between LST and Ta showed weaker coupling in highly urbanized areas than in rural areas, with summertime surface-urban-heat-island intensity (based on LST) being up to 14°C higher than corresponding urban–rural differences in Ta.


2019 ◽  
Vol 12 (4) ◽  
pp. 74-95 ◽  
Author(s):  
Mikhail I. Varentsov ◽  
Mikhail Y. Grishchenko ◽  
Hendrik Wouters

This study compares three popular approaches to quantify the urban heat island (UHI) effect in Moscow megacity in a summer season (June-August 2015). The first approach uses the measurements of the near-surface air temperature obtained from weather stations, the second is based on remote sensing from thermal imagery of MODIS satellites, and the third is based on the numerical simulations with the mesoscale atmospheric model COSMO-CLM coupled with the urban canopy scheme TERRA_URB. The first approach allows studying the canopy-layer UHI (CLUHI, or anomaly of a near- surface air temperature), while the second allows studying the surface UHI (SUHI, or anomaly of a land surface temperature), and both types of the UHI could be simulated by the atmospheric model. These approaches were compared in the daytime, evening and nighttime conditions. The results of the study highlight a substantial difference between the SUHI and CLUHI in terms of the diurnal variation and spatial structure. The strongest differences are found at the daytime, at which the SUHI reaches the maximal intensity (up to 10°С) whereas the CLUHI reaches the minimum intensity (1.5°С). However, there is a stronger consistency between CLUHU and SUHI at night, when their intensities converge to 5–6°С. In addition, the nighttime CLUHI and SUHI have similar monocentric spatial structure with a temperature maximum in the city center. The presented findings should be taken into account when interpreting and comparing the results of UHI studies, based on the different approaches. The mesoscale model reproduces the CLUHI-SUHI relationships and provides good agreement with in situ observations on the CLUHI spatiotemporal variations (with near-zero biases for daytime and nighttime CLUHI intensity and correlation coefficients more than 0.8 for CLUHI spatial patterns). However, the agreement of the simulated SUHI with the remote sensing data is lower than agreement of the simulated CLUHI with in situ measurements. Specifically, the model tends to overestimate the daytime SUHI intensity. These results indicate a need for further in-depth investigation of the model behavior and SUHI–CLUHI relationships in general.


2021 ◽  
Vol 21 (17) ◽  
pp. 13687-13711
Author(s):  
Michael Biggart ◽  
Jenny Stocker ◽  
Ruth M. Doherty ◽  
Oliver Wild ◽  
David Carruthers ◽  
...  

Abstract. Information on the spatiotemporal characteristics of Beijing's urban–rural near-surface air temperature difference, known as the canopy layer urban heat island (UHI), is important for future urban climate management strategies. This paper investigates the variation of near-surface air temperatures within Beijing at a neighbourhood-scale resolution (∼ 100 m) during winter 2016 and summer 2017. We perform simulations using the urban climate component of the ADMS-Urban model with land surface parameters derived from both local climate zone classifications and OpenStreetMap land use information. Through sensitivity simulations, the relative impacts of surface properties and anthropogenic heat emissions on the temporal variation of Beijing's UHI are quantified. Measured UHI intensities between central Beijing (Institute of Atmospheric Physics) and a rural site (Pinggu) during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) campaigns, peak during the evening at ∼ 4.5 ∘C in both seasons. In winter, the nocturnal UHI is dominated by anthropogenic heat emissions but is underestimated by the model. Higher-resolution anthropogenic heat emissions may capture the effects of local sources (e.g. residential buildings and adjacent major roads). In summer, evening UHI intensities are underestimated, especially during heatwaves. The inability to fully replicate the prolonged release of heat stored in the urban fabric may explain this. Observed negative daytime UHI intensities in summer are more successfully captured when surface moisture levels in central Beijing are increased. However, the spatial correlation between simulated air temperatures and satellite-derived land surface temperatures is stronger with a lower urban moisture scenario. This result suggests that near-surface air temperatures at the urban meteorological site are likely influenced by fine-scale green spaces that are unresolved by the available land cover data and demonstrates the expected differences between surface and air temperatures related to canopy layer advection. This study lays the foundations for future studies of heat-related health risks and UHI mitigation strategies across Beijing and other megacities.


Sign in / Sign up

Export Citation Format

Share Document