scholarly journals Diurnal Variations of Albedo Retrieved from Earth Radiation Budget Experiment Measurements

2014 ◽  
Vol 53 (12) ◽  
pp. 2747-2760 ◽  
Author(s):  
David A. Rutan ◽  
G. Louis Smith ◽  
Takmeng Wong

AbstractFive years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ERBS data processing by a directional model, and some is due to the diurnal cycle of cloudiness. The second PC describes 2%–4% of the variance for ocean and 5% for land, and it is primarily due to variations of cloudiness throughout the day, which are asymmetric about noon. These terms show the response of the atmosphere to the cycle of solar heating. The third PC for ocean is a two-peaked curve, and the associated map shows high values in cloudy regions.

2003 ◽  
Vol 60 (13) ◽  
pp. 1529-1542 ◽  
Author(s):  
G. Louis Smith ◽  
David A. Rutan

Abstract The diurnal cycle of outgoing longwave radiation (OLR) from the earth is analyzed by decomposing satellite observations into a set of empirical orthogonal functions (EOFs). The observations are from the Earth Radiation Budget Experiment (ERBE) scanning radiometer aboard the Earth Radiation Budget Satellite, which had a precessing orbit with 57° inclination. The diurnal cycles of land and ocean differ considerably. The first EOF for land accounts for 73% to 85% of the variance, whereas the first EOF for ocean accounts for only 16% to 20% of the variance, depending on season. The diurnal cycle for land is surprisingly symmetric about local noon for the first EOF, which is approximately a half-sine during day and flat at night. The second EOF describes lead–lag effects due to surface heating and cloud formation. For the ocean, the first EOF and second EOF are similar to that of land, except for spring, when the first ocean EOF is a semidiurnal cycle and the second ocean EOF is the half-sine. The first EOF for land has a daytime peak of about 50 W m−2, whereas the first ocean EOF peaks at about 25 W m−2. The geographical and seasonal patterns of OLR diurnal cycle provide insights into the interaction of radiation with the atmosphere and surface and are useful for validating and upgrading circulation models.


1990 ◽  
Author(s):  
Jack Paden ◽  
Dhirendra K. Pandey ◽  
Robert S. Wilson ◽  
Susan Thomas ◽  
Michael A. Gibson ◽  
...  

1994 ◽  
Vol 12 (2/3) ◽  
pp. 240-253 ◽  
Author(s):  
F. Parol ◽  
J. C. Buriez ◽  
D. Crétel ◽  
Y. Fouquart

Abstract. Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m) have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%); it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.


1986 ◽  
Vol 24 (2) ◽  
pp. 357 ◽  
Author(s):  
Frederick B. House ◽  
Arnold Gruber ◽  
Garry E. Hunt ◽  
Ann T. Mecherikunnel

2006 ◽  
Vol 24 (8) ◽  
pp. 2091-2103 ◽  
Author(s):  
S. Fadnavis ◽  
G. Beig

Abstract. To investigate the effects of decadal solar variability on ozone and temperature in the tropical stratosphere, along with interconnections to other features of the middle atmosphere, simultaneous data obtained from the Halogen Occultation Experiment (HALOE) aboard the Upper Atmospheric Research Satellite (UARS) and the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS) during the period 1992–2004 have been analyzed using a multifunctional regression model. In general, responses of solar signal on temperature and ozone profiles show good agreement for HALOE and SAGE~II measurements. The inferred annual-mean solar effect on temperature is found to be positive in the lower stratosphere (max 1.2±0.5 K / 100 sfu) and near stratopause, while negative in the middle stratosphere. The inferred solar effect on ozone is found to be significant in most of the stratosphere (2±1.1–4±1.6% / 100 sfu). These observed results are in reasonable agreement with model simulations. Solar signals in ozone and temperature are in phase in the lower stratosphere and they are out of phase in the upper stratosphere. These inferred solar effects on ozone and temperature are found to vary dramatically during some months, at least in some altitude regions. Solar effects on temperature are found to be negative from August to March between 9 mb–3 mb pressure levels while solar effects on ozone are maximum during January–March near 10 mb in the Northern Hemisphere and 5 mb–7 mb in the Southern Hemisphere.


2000 ◽  
Vol 105 (D16) ◽  
pp. 20757-20772 ◽  
Author(s):  
Laura D. Fowler ◽  
Bruce A. Wielicki ◽  
David A. Randall ◽  
Mark D. Branson ◽  
Gary G. Gibson ◽  
...  

1992 ◽  
Vol 97 (D16) ◽  
pp. 18061 ◽  
Author(s):  
Sandrine Bony ◽  
Hervé Le Treut ◽  
Jean-Philippe Duvel ◽  
Robert S. Kandel

1997 ◽  
Author(s):  
M. Challa ◽  
S. Kotaru ◽  
G. Natanson ◽  
M. Challa ◽  
S. Kotaru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document