The Dispersion of Silver Iodide Particles from Ground-Based Generators over Complex Terrain. Part II: WRF Large-Eddy Simulations versus Observations

2014 ◽  
Vol 53 (6) ◽  
pp. 1342-1361 ◽  
Author(s):  
Lulin Xue ◽  
Xia Chu ◽  
Roy Rasmussen ◽  
Daniel Breed ◽  
Bruce Boe ◽  
...  

AbstractA numerical modeling study has been conducted to explore the ability of the Weather Research and Forecasting (WRF) model-based large-eddy simulation (LES) with 100-m grid spacing to reproduce silver iodide (AgI) particle dispersion by comparing the model results with measurements made on 16 February 2011 over the Medicine Bow Mountains in Wyoming. Xue et al.'s recently developed AgI cloud-seeding parameterization was applied in this study to simulate AgI release from ground-based generators. Qualitative and quantitative comparisons between the LES results and observed AgI concentrations were conducted. Analyses of turbulent kinetic energy (TKE) features within the planetary boundary layer (PBL) and comparisons between the 100-m LES and simulations with 500-m grid spacing were performed as well. The results showed the following: 1) Despite the moist bias close to the ground and above 4 km AGL, the LES with 100-m grid spacing captured the essential environmental conditions except for a slightly more stable PBL relative to the observed soundings. 2) Wind shear is the dominant TKE production mechanism in wintertime PBL over complex terrain and generates a PBL of about 1000-m depth. The terrain-induced turbulent eddies are primarily responsible for the vertical dispersion of AgI particles. 3) The LES-simulated AgI plumes were shallow and narrow, in agreement with observations. The LES overestimated AgI concentrations close to the ground, which is consistent with the higher static stability in the model than is observed. 4) Non-LES simulations using PBL schemes had difficulty in capturing the shear-dominant turbulent PBL structure over complex terrain in wintertime. Therefore, LES of wintertime orographic clouds with grid spacing close to 500 m or finer are recommended.

2016 ◽  
Vol 55 (2) ◽  
pp. 445-464 ◽  
Author(s):  
Lulin Xue ◽  
Xia Chu ◽  
Roy Rasmussen ◽  
Daniel Breed ◽  
Bart Geerts

AbstractSeveral Weather Research and Forecasting (WRF) Model simulations of natural and seeded clouds have been conducted in non-LES and LES (large-eddy simulation) modes to investigate the seeding impact on wintertime orographic clouds for an actual seeding case on 18 February 2009 in the Medicine Bow Mountains of Wyoming. Part I of this two-part series has shown the capability of WRF LES with 100-m grid spacing to capture the essential environmental conditions by comparing the model results with measurements from a variety of instruments. In this paper, the silver iodide (AgI) dispersion features, the AgI impacts on the turbulent kinetic energy (TKE), the microphysics, and the precipitation are examined in detail using the model data, which leads to five main results. 1) The vertical dispersion of AgI particles is more efficient in cloudy conditions than in clear conditions. 2) The wind shear and the buoyancy are both important TKE production mechanisms in the wintertime PBL over complex terrain in cloudy conditions. The buoyancy-induced eddies are more responsible for the AgI vertical dispersion than the shear-induced eddies are. 3) Seeding has insignificant effects on the cloud dynamics. 4) AgI particles released from the ground-based generators affect the cloud within the boundary layer below 1 km AGL through nucleating extra ice crystals, converting liquid water into ice, depleting more vapor, and generating more precipitation on the ground. The AgI nucleation rate is inversely related to the natural ice nucleation rate. 5) The seeding effects on the ground precipitation are confined within narrow areas. The relative seeding effect ranges between 5% and 20% for the simulations with different grid spacing.


2020 ◽  
Vol 148 (2) ◽  
pp. 577-595 ◽  
Author(s):  
David J. Wiersema ◽  
Katherine A. Lundquist ◽  
Fotini Katopodes Chow

Abstract Improvements to the Weather Research and Forecasting (WRF) Model are made to enable multiscale simulations over highly complex terrain with dynamically downscaled boundary conditions from the mesoscale to the microscale. Over steep terrain, the WRF Model develops numerical errors that are due to grid deformation of the terrain-following coordinates. An alternative coordinate system, the immersed boundary method (IBM), has been implemented into WRF, allowing for simulations over highly complex terrain; however, the new coordinate system precluded nesting within mesoscale simulations using WRF’s native terrain-following coordinates. Here, the immersed boundary method and WRF’s grid-nesting framework are modified to seamlessly work together. This improved framework for the first time allows for large-eddy simulation over complex (urban) terrain with IBM to be nested within a typical mesoscale WRF simulation. Simulations of the Joint Urban 2003 field campaign in Oklahoma City, Oklahoma, are performed using a multiscale five-domain nested configuration, spanning horizontal grid resolutions from 6 km to 2 m. These are compared with microscale-only simulations with idealized lateral boundary conditions and with observations of wind speed/direction and SF6 concentrations from a controlled release from intensive observation period 3. The multiscale simulation, which is configured independent of local observations, shows similar model skill predicting wind speed/direction and improved skill predicting SF6 concentrations when compared with the idealized simulations, which require use of observations to set mean flow conditions. Use of this improved multiscale framework shows promise for enabling large-eddy simulation over highly complex terrain with dynamically downscaled boundary conditions from mesoscale models.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhen Gao ◽  
Liguang Wu ◽  
Xingyang Zhou

It has been numerically demonstrated that the turbulence above the boundary is important to tropical cyclone intensification and rapid intensification, but the three-dimensional structures of the sub-grid-scale (SGS) eddy have not been revealed due to the lack of observational data. In this study, two numerical simulations of Super Typhoon Rammasun (2014) were conducted with the Advanced Weather Research and Forecast (WRF) model by incorporating the large-eddy simulation (LES) technique, in which the enhanced eyewall convection and the process of rapid intensification are captured. Consistent with previous observational studies, the strong turbulent kinetic energy (TKE) is found throughout the whole eyewall inside of the radius of maximum wind in both experiments. The simulations indicate that the strong TKE is associated with horizontal rolls with the horizontal extent of 2–4 km, which are aligned azimuthally in the intense eyewall convection. It is indicated that the three-dimensional structures of the SGS eddy can be simulated with the vertical grid spacing of ∼100 m when the horizontal grid spacing is 74 m. It is suggested that there is considerable turbulence associated with azimuthally-aligned horizontal rolls in the mid-level eyewall of tropical cyclone.


2014 ◽  
Vol 660 ◽  
pp. 745-749
Author(s):  
Rosly Nurhayati ◽  
Mohd Sofian

ASEAN (Association of Southeast Asian Nations) countries may have a huge potential for utilizing wind energy as it requires little in the way of land. Land in these countries is very fertile and is used by other alternatives, therefore reducing its conduciveness for developing solar energy. The wind resources map is widely available for Laos, Vietnam, Thailand, Cambodia and Philippines but there is not much information about other ASEAN countries. Based on meteorological data, Tioman Island was selected as the area that had the best potential for installing wind turbines in Malaysia. A more detailed study was conducted using a CFD model for unsteady flow, known as the Research Institute for Applied Mechanics, Kyushu University, COMputational Prediction of Airflow over Complex Terrain (RIAM-COMPACT®) which is based on the Large-Eddy Simulation (LES) technique. Micro-siting technique is used as a tool for selecting appropriate point and an inappropriate point for locating wind turbine generators (WTGs) at Tioman Island, Malaysia. The suggested points for locating WTGs were shown based on the numerical results obtained from the calculation.


2018 ◽  
Vol 146 (3) ◽  
pp. 833-851 ◽  
Author(s):  
Wei Huang ◽  
J.-W. Bao ◽  
Xu Zhang ◽  
Baode Chen

ABSTRACT The authors coarse-grained and analyzed the output from a large-eddy simulation (LES) of an idealized extratropical supercell storm using the Weather Research and Forecasting (WRF) Model with various horizontal resolutions (200 m, 400 m, 1 km, and 3 km). The coarse-grained physical properties of the simulated convection were compared with explicit WRF simulations of the same storm at the same resolution of coarse-graining. The differences between the explicit simulations and the coarse-grained LES output increased as the horizontal grid spacing in the explicit simulation coarsened. The vertical transport of the moist static energy and total hydrometeor mixing ratio in the explicit simulations converged to the LES solution at the 200-m grid spacing. Based on the analysis of the coarse-grained subgrid vertical flux of the moist static energy, the authors confirmed that the nondimensional subgrid vertical flux of the moist static energy varied with the subgrid fractional cloudiness according to a function of fractional cloudiness, regardless of the box size. The subgrid mass flux could not account for most of the total subgrid vertical flux of the moist static energy because the eddy-transport component associated with the internal structural inhomogeneity of convective clouds was of a comparable magnitude. This study highlights the ongoing challenge in developing scale-aware parameterizations of subgrid convection.


2009 ◽  
Vol 9 (6) ◽  
pp. 1871-1880 ◽  
Author(s):  
E. Fiori ◽  
A. Parodi ◽  
F. Siccardi

Abstract. Computer power has grown to the point that very-fine-mesh mesoscale modelling is now possible. Going down through scales is clumsily supposed to reduce uncertainty and to improve the predictive ability of the models. This work provides a contribution to understand how the uncertainty in the numerical weather prediction (NWP) of severe weather events is affected by increasing the model grid resolution and by choosing a parameterization which is able to represent turbulent processes at such finer scales. A deep moist convective scenario, a supercell, in a simplified atmospheric setting is studied by mean of high resolution numerical simulations with COSMO-Model. Different turbulent closures are used and their impacts on the space-time properties of convective fields are discussed. The convective-resolving solutions adopting Large Eddy Simulation (LES) turbulent closure converge with respect to the overall flow field structure when grid spacing is properly reduced. By comparing the rainfall fields produced by the model on larger scales with those at the convergence scales it's possible to size up the uncertainty introduced by the modelling itself on the predicted ground effects in such simplified scenario.


2020 ◽  
Author(s):  
Gokhan Kirkil

<p>WRF model provides a potentially powerful framework for coupled simulations of flow covering a wide range of<br>spatial and temporal scales via a successive grid nesting capability. Nesting can be repeated down to turbulence<br>solving large eddy simulation (LES) scales, providing a means for significant improvements of simulation of<br>turbulent atmospheric boundary layers. We will present the recent progress on our WRF-LES simulations of<br>the Perdigao Experiment performed over mountainous terrain. We performed multi-scale simulations using<br>WRF’s different Planetary Boundary Layer (PBL) parameterizations as well as Large Eddy Simulation (LES)<br>and compared the results with the detailed field measurements. WRF-LES model improved the mean flow field<br>as well as second-order flow statistics. Mean fluctuations and turbulent kinetic energy fields from WRF-LES<br>solution are investigated in several cross-sections around the hill which shows good agreement with measurements.</p>


2014 ◽  
Vol 53 (2) ◽  
pp. 377-394 ◽  
Author(s):  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich

AbstractAs computing capabilities expand, operational and research environments are moving toward the use of finescale atmospheric numerical models. These models are attractive for users who seek an accurate description of small-scale turbulent motions. One such numerical tool is the Weather Research and Forecasting (WRF) model, which has been extensively used in synoptic-scale and mesoscale studies. As finer-resolution simulations become more desirable, it remains a question whether the model features originally designed for the simulation of larger-scale atmospheric flows will translate to adequate reproductions of small-scale motions. In this study, turbulent flow in the dry atmospheric convective boundary layer (CBL) is simulated using a conventional large-eddy-simulation (LES) code and the WRF model applied in an LES mode. The two simulation configurations use almost identical numerical grids and are initialized with the same idealized vertical profiles of wind velocity, temperature, and moisture. The respective CBL forcings are set equal and held constant. The effects of the CBL wind shear and of the varying grid spacings are investigated. Horizontal slices of velocity fields are analyzed to enable a comparison of CBL flow patterns obtained with each simulation method. Two-dimensional velocity spectra are used to characterize the planar turbulence structure. One-dimensional velocity spectra are also calculated. Results show that the WRF model tends to attribute slightly more energy to larger-scale flow structures as compared with the CBL structures reproduced by the conventional LES. Consequently, the WRF model reproduces relatively less spatial variability of the velocity fields. Spectra from the WRF model also feature narrower inertial spectral subranges and indicate enhanced damping of turbulence on small scales.


Sign in / Sign up

Export Citation Format

Share Document