scholarly journals Bulk-Density Representations of Branched Planar Ice Crystals: Errors in the Polarimetric Radar Variables

2018 ◽  
Vol 57 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Robert S. Schrom ◽  
Matthew R. Kumjian

AbstractRecent interest in interpreting polarimetric radar observations of ice and evaluating microphysical model output with these observations has highlighted the importance of accurately computing the scattering of microwave radiation by branched planar ice crystals. These particles are often represented as spheroids with uniform bulk density, reduced from that of solid ice to account for the complex, nonuniform structure of natural branched crystals. In this study, the potential errors that arise from this assumption are examined by comparing scattering calculations of branched planar crystals with those of homogeneous, reduced-density plate crystals and spheroids with the same mass, aspect ratio, and maximum dimension. The results show that this assumption leads to significant errors in backscatter cross sections at horizontal and vertical polarization, specific differential phase (KDP), and differential reflectivity (ZDR), with the largest ZDR errors for ice crystals with the most extreme aspect ratios (<0.01) and effective densities < 250 kg m−3. For example, the maximum errors in X-band ZDR are 4.5 dB for 5.6-mm branched planar crystals. However, substantial errors are present at all weather radar frequencies, with resonance scattering effects at Ka and W band amplifying the low-frequency errors. The implications of these results on the interpretation of polarimetric radar observations and forward modeling of the polarimetric radar variables from microphysical model output are discussed.

2012 ◽  
Vol 51 (4) ◽  
pp. 763-779 ◽  
Author(s):  
Terry J. Schuur ◽  
Hyang-Suk Park ◽  
Alexander V. Ryzhkov ◽  
Heather D. Reeves

AbstractA new hydrometeor classification algorithm that combines thermodynamic output from the Rapid Update Cycle (RUC) model with polarimetric radar observations is introduced. The algorithm improves upon existing classification techniques that rely solely on polarimetric radar observations by using thermodynamic information to help to diagnose microphysical processes (such as melting or refreezing) that might occur aloft. This added information is especially important for transitional weather events for which past studies have shown radar-only techniques to be deficient. The algorithm first uses vertical profiles of wet-bulb temperature derived from the RUC model output to provide a background precipitation classification type. According to a set of empirical rules, polarimetric radar data are then used to refine precipitation-type categories when the observations are found to be inconsistent with the background classification. Using data from the polarimetric KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) located in Norman, Oklahoma, the algorithm is tested on a transitional winter-storm event that produced a combination of rain, freezing rain, ice pellets, and snow as it passed over central Oklahoma on 30 November 2006. Examples are presented in which the presence of a radar bright band (suggesting an elevated warm layer) is observed immediately above a background classification of dry snow (suggesting the absence of an elevated warm layer in the model output). Overall, the results demonstrate the potential benefits of combining polarimetric radar data with thermodynamic information from numerical models, with model output providing widespread coverage and polarimetric radar data providing an observation-based modification of the derived precipitation type at closer ranges.


2012 ◽  
Vol 29 (8) ◽  
pp. 989-1008 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Gerald G. Mace ◽  
Roger Marchand ◽  
Matthew D. Shupe ◽  
Anna G. Hallar ◽  
...  

Abstract Scanning polarimetric W-band radar data were evaluated for the purpose of identifying predominant ice hydrometeor habits. Radar and accompanying cloud microphysical measurements were conducted during the Storm Peak Laboratory Cloud Property Validation Experiment held in Steamboat Springs, Colorado, during the winter season of 2010/11. The observed ice hydrometeor habits ranged from pristine and rimed dendrites/stellars to aggregates, irregulars, graupel, columns, plates, and particle mixtures. The slant 45° linear depolarization ratio (SLDR) trends as a function of the radar elevation angle are indicative of the predominant hydrometeor habit/shape. For planar particles, SLDR values increase from values close to the radar polarization cross coupling of about −21.8 dB at zenith viewing to maximum values at slant viewing. These maximum values depend on predominant aspect ratio and bulk density of hydrometeors and also show some sensitivity to particle characteristic size. The highest observed SLDRs were around −8 dB for pristine dendrites. Unlike planar-type hydrometeors, columnar-type particles did not exhibit pronounced depolarization trends as a function of viewing direction. A difference in measured SLDR values between zenith and slant viewing can be used to infer predominant aspect ratios of planar hydrometeors if an assumption about their bulk density is made. For columnar hydrometeors, SLDR offsets from the cross-coupling value are indicative of aspect ratios. Experimental data were analyzed for a number of events with prevalence of planar-type hydrometeors and also for observations when columnar particles were the dominant species. A relatively simple spheroidal model and accompanying T-matrix calculations were able to approximate most radar depolarization changes with viewing angle observed for different hydrometeor types.


2018 ◽  
Author(s):  
Marta Tecla Falconi ◽  
Annakaisa von Lerber ◽  
Davide Ori ◽  
Frank Silvio Marzano ◽  
Dmitri Moisseev

Abstract. Radar-based snowfall intensity retrieval is investigated at centimeter and millimeter wavelengths using high-quality collocated ground-based multi-frequency radar and video-disdrometer observations. Using data from four snowfall events, recorded during the Biogenic Aerosols Effects on Clouds and Climate (BAECC) campaign in Finland, measurements of liquid-water-equivalent snowfall rate S are correlated to radar equivalent reflectivity factors Ze, measured by the Atmospheric Radiation Measurement (ARM) cloud radars operating at X, Ka and W frequency bands. From these coupled observations power-law Ze-S relationships are derived for all considered frequencies and distinguishing fluffy from rimed snowfall. Interestingly fluffy-snow events show a spectrally distinct signature of Ze-S with respect to rimed-snow cases. In order to understand the connection between snowflake microphysical and multi-frequency backscattering properties, numerical simulations are also performed by using the particle size distribution provided by the in-situ video-disdrometer. The latter are carried out by using both the T-matrix method (TMM) for soft-spheroids with different aspect ratios and exploiting a pre-computed discrete dipole approximation (DDA) database for complex-shape snowflakes. Based on the presented results, it is concluded that the soft-spheroid approximation can be adopted to explain the observed multi-frequency Ze-S relations if a proper spheroid aspect ratio is selected. The latter may depend on the snowfall type. A further analysis of the backscattering simulations reveals that TMM cross-sections are higher than the DDA ones for small ice particles, but lower for larger particles. These differences may explain why the soft-spheroid approximation is satisfactory for radar reflectivity simulations, the errors of computed cross-sections for larger and smaller particles compensating each other.


2014 ◽  
Vol 142 (10) ◽  
pp. 3651-3665 ◽  
Author(s):  
Retha Matthee ◽  
John R. Mecikalski ◽  
Lawrence D. Carey ◽  
Phillip M. Bitzer

Abstract To increase understanding of the relationships between lightning and nonlightning convective storms, lightning observations from the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Analyses (NAMMA) campaign were analyzed with Meteosat Second Generation (MSG) geostationary satellite and S-band NASA Polarimetric Doppler Weather Radar (NPOL) data. The study’s goal was to analyze the time evolution of infrared satellite fields and ground-based polarimetric radar during NAMMA to quantify relationships between satellite and radar observations for lightning and nonlightning convective clouds over equatorial Africa. Using NPOL data, very low-frequency arrival time difference lightning data, and MSG Spinning Enhanced Visible and Infrared Imager observations, the physical attributes of growing cumulus clouds, including ice mass production, updraft strength, cloud depth, and cloud-top glaciation were examined. It was found that, on average, the lightning storms had stronger updrafts (seen in the satellite and radar fields), which lead to the formation of deeper clouds (seen in the satellite and radar fields) and subsequently much more ice in the mixed-phase region (as confirmed in radar observations), as well as much more nonprecipitating ice in the top 1 km of the cloud (as quantified in both satellite and radar fields) than the nonlightning storms. Computed radar-derived ice masses in cumulus clouds verifies the traditional MSG indicators of cloud-top glaciation, while NPOL verifies internal structures (i.e., large amounts of graupel) where satellite and radar show strong updrafts.


2010 ◽  
Vol 11 (3) ◽  
pp. 781-796 ◽  
Author(s):  
Jonathan J. Gourley ◽  
Scott E. Giangrande ◽  
Yang Hong ◽  
Zachary L. Flamig ◽  
Terry Schuur ◽  
...  

Abstract Rainfall estimated from the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler [WSR-88D (KOUN)] was evaluated using a dense Micronet rain gauge network for nine events on the Ft. Cobb research watershed in Oklahoma. The operation of KOUN and its upgrade to dual polarization was completed by the National Severe Storms Laboratory. Storm events included an extreme rainfall case from Tropical Storm Erin that had a 100-yr return interval. Comparisons with collocated Micronet rain gauge measurements indicated all six rainfall algorithms that used polarimetric observations had lower root-mean-squared errors and higher Pearson correlation coefficients than the conventional algorithm that used reflectivity factor alone when considering all events combined. The reflectivity based relation R(Z) was the least biased with an event-combined normalized bias of −9%. The bias for R(Z), however, was found to vary significantly from case to case and as a function of rainfall intensity. This variability was attributed to different drop size distributions (DSDs) and the presence of hail. The synthetic polarimetric algorithm R(syn) had a large normalized bias of −31%, but this bias was found to be stationary. To evaluate whether polarimetric radar observations improve discharge simulation, recent advances in Markov Chain Monte Carlo simulation using the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) were used. This Bayesian approach infers the posterior probability density function of model parameters and output predictions, which allows us to quantify HL-RDHM uncertainty. Hydrologic simulations were compared to observed streamflow and also to simulations forced by rain gauge inputs. The hydrologic evaluation indicated that all polarimetric rainfall estimators outperformed the conventional R(Z) algorithm, but only after their long-term biases were identified and corrected.


2021 ◽  
Author(s):  
Siddharth Garia ◽  
Arnab Kumar Pal ◽  
Karangat Ravi ◽  
Archana M Nair

&lt;p&gt;Seismic inversion method is widely used to characterize reservoirs and detect zones of interest, i.e., hydrocarbon-bearing zone in the subsurface by transforming seismic reflection data into quantitative subsurface rock properties. The primary aim of seismic inversion is to transform the 3D seismic section/cube into an acoustic impedance (AI) cube. The integration of this elastic attribute, i.e., AI cube with well log data, can thereafter help to establish correlations between AI and different petrophysical properties. The seismic inversion algorithm interpolates and spatially populates data/parameters of wells to the entire seismic section/cube based on the well log information. The case study presented here uses machine learning-neural network based algorithm to extract the different petrophysical properties such as porosity and bulk density from the seismic data of the Upper Assam basin, India. We analyzed three different stratigraphic&amp;#160; units that are established to be producing zones in this basin.&lt;/p&gt;&lt;p&gt;&amp;#160;AI model is generated from the seismic reflection data with the help of colored inversion operator. Subsequently, low-frequency model is generated from the impedance data extracted from the well log information. To compensate for the band limited nature of the seismic data, this low-frequency model is added to the existing acoustic model. Thereafter, a feed-forward neural network (NN) is trained with AI as input and porosity/bulk density as target, validated with NN generated porosity/bulk density with actual porosity/bulk density from well log data. The trained network is thus tested over the entire region of interest to populate these petrophysical properties.&lt;/p&gt;&lt;p&gt;Three seismic zones were identified from the seismic section ranging from 681 to 1333 ms, 1528 to 1575 ms and 1771 to 1814 ms. The range of AI, porosity and bulk density were observed to be 1738 to 6000 (g/cc) * (m/s), 26 to 38% and 1.95 to 2.46 g/cc respectively. Studies conducted by researchers in the same basin yielded porosity results in the range of 10-36%. The changes in acoustic impedance, porosity and bulk density may be attributed to the changes in lithology. NN method was prioritized over other traditional statistical methods due to its ability to model any arbitrary dependency (non-linear relationships between input and target values) and also overfitting can be avoided. Hence, the workflow presented here provides an estimation of reservoir properties and is considered useful in predicting petrophysical properties for reservoir characterization, thus helping to estimate reservoir productivity.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document