scholarly journals A Large-Eddy Simulation Study of Atmospheric Boundary Layer Influence on Stratified Flows over Terrain

2016 ◽  
Vol 73 (7) ◽  
pp. 2615-2632 ◽  
Author(s):  
Jeremy A. Sauer ◽  
Domingo Muñoz-Esparza ◽  
Jesse M. Canfield ◽  
Keeley R. Costigan ◽  
Rodman R. Linn ◽  
...  

Abstract The impact of atmospheric boundary layer (ABL) interactions with large-scale stably stratified flow over an isolated, two-dimensional hill is investigated using turbulence-resolving large-eddy simulations. The onset of internal gravity wave breaking and leeside flow response regimes of trapped lee waves and nonlinear breakdown (or hydraulic-jump-like state) as they depend on the classical inverse Froude number, Fr−1 = Nh/Ug, is explored in detail. Here, N is the Brunt–Väisälä frequency, h is the hill height, and Ug is the geostrophic wind. The results here demonstrate that the presence of a turbulent ABL influences mountain wave (MW) development in critical aspects, such as dissipation of trapped lee waves and amplified stagnation zone turbulence through Kelvin–Helmholtz instability. It is shown that the nature of interactions between the large-scale flow and the ABL is better characterized by a proposed inverse compensated Froude number, = N(h − zi)/Ug, where zi is the ABL height. In addition, it is found that the onset of the nonlinear-breakdown regime, ≈ 1.0, is initiated when the vertical wavelength becomes comparable to the sufficiently energetic scales of turbulence in the stagnation zone and ABL, yielding an abrupt change in leeside flow response. Finally, energy spectra are presented in the context of MW flows, supporting the existence of a clear transition in leeside flow response, and illustrating two distinct energy distribution states for the trapped-lee-wave and the nonlinear-breakdown regimes.

Author(s):  
Myra L. Blaylock ◽  
Brent C. Houchens ◽  
David C. Maniaci ◽  
Thomas Herges ◽  
Alan Hsieh ◽  
...  

Abstract Power production of the turbines at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at the Texas Tech University’s National Wind Institute Research Center was measured experimentally and simulated for neutral atmospheric boundary layer operating conditions. Two V27 wind turbines were aligned in series with the dominant wind direction, and the upwind turbine was yawed to investigate the impact of wake steering on the downwind turbine. Two conditions were investigated, including that of the leading turbine operating alone and both turbines operating in series. The field measurements include meteorological evaluation tower (MET) data and light detection and ranging (lidar) data. Computations were performed by coupling large eddy simulations (LES) in the three-dimensional, transient code Nalu-Wind with engineering actuator line models of the turbines from OpenFAST. The simulations consist of a coarse precursor without the turbines to set up an atmospheric boundary layer inflow followed by a simulation with refinement near the turbines. Good agreement between simulations and field data are shown. These results demonstrate that Nalu-Wind holds the promise for the prediction of wind plant power and loads for a range of yaw conditions.


Author(s):  
Qingfang Jiang

AbstractThe impact of Kelvin-Helmholtz billows (KHBs) in an elevated shear layer (ESL) on the underlying atmospheric boundary layer (BL) is examined utilizing a group of large-eddy simulations. In these simulations, KHBs develop in the ESL and experience exponential growth, saturation, and exponential decay stages. In response, strong wavy motion occurs in the BL, inducing rotor circulations near the surface when the BL is stable. During the saturation stage, secondary instability develops in the ESL and the wavy BL almost simultaneously, followed by the breakdown of the quasi-two-dimensional KH billows and BL waves into three-dimensional turbulence. Consequently, during and after a KH event, the underlying BL becomes more turbulent with its depth increased and stratification weakened substantially, suggestive of significant lasting impact of elevated KH billows on the atmospheric BL. The eventual impact of KHBs on the BL is found to be sensitive to both the ESL and BL characteristics.


2012 ◽  
Vol 69 (5) ◽  
pp. 1582-1601 ◽  
Author(s):  
Gilles Bellon ◽  
Bjorn Stevens

Abstract A simple framework to study the sensitivity of atmospheric boundary layer (ABL) models to the large-scale conditions and forcings is introduced. This framework minimizes the number of parameters necessary to describe the large-scale conditions, subsidence, and radiation. Using this framework, the sensitivity of the stationary ABL to the large-scale boundary conditions [underlying sea surface temperature (SST) and overlying humidity and temperature in the free troposphere] is investigated in large-eddy simulations (LESs). For increasing SST or decreasing free-tropospheric temperature, the LES exhibits a transition from a cloud-free, well-mixed ABL stationary state, through a cloudy, well-mixed stationary state and a stable shallow cumulus stationary state, to an unstable regime with a deepening shallow cumulus layer. For a warm SST, when increasing free-tropospheric humidity, the LES exhibits a transition from a stable shallow cumulus stationary state, through a stable cumulus-under-stratus stationary state, to an unstable regime with a deepening, cumulus-under-stratus layer. For a cool SST, when increasing the free-tropospheric humidity, the LES stationary state exhibits a transition from a cloud-free, well-mixed ABL regime, through a well-mixed cumulus-capped regime, to a stratus-capped regime with a decoupling between the subcloud and cloud layers. This dataset can be used to evaluate other ABL models. As an example, the sensitivity of a bulk model based on the mixing-line model is presented. This bulk model reproduces the LES sensitivity to SST and free-tropospheric temperature for the stable and unstable shallow cumulus regimes, but it is less successful at reproducing the LES sensitivity to free-tropospheric humidity for both shallow cumulus and well-mixed regimes.


2007 ◽  
Vol 64 (6) ◽  
pp. 1941-1958 ◽  
Author(s):  
Marcelo Chamecki ◽  
Charles Meneveau ◽  
Marc B. Parlange

Phenomena such as large-scale shear, buoyancy, and the proximity to the ground surface significantly affect interactions among scales in atmospheric boundary layer turbulent flows. Hence, these phenomena impact parameters that enter subgrid-scale (SGS) parameterizations used in large eddy simulations (LES) of the atmospheric boundary layer. The effects of these phenomena upon SGS parameters have, to date, been studied mostly as functions of the global state of the flow. For instance, the Smagorinsky coefficient has been measured as a function of the mean shear and stability condition of the atmosphere as determined from the average surface heat and momentum fluxes. However, in LES the global average field values are often difficult to determine a priori and the SGS parameters ideally must be expressed as a function of local flow variables that characterize the instantaneous flow phenomena. With the goal of improving the Smagorinsky closure, in this study several dimensionless parameters characterizing the local structure and important dynamical characteristics of the flow are defined. These local parameters include enstrophy, vortex stretching, self-amplification of strain rate, and normalized temperature gradient and all are defined in such a way that they remain bounded under all circumstances. The dependence of the Smagorinsky coefficient on these local parameters is studied a priori from field data measured in the atmospheric surface layer and, as a reference point, from direct numerical simulation of neutrally buoyant, isotropic turbulence. To capture the local effects in a statistically meaningful fashion, conditional averaging is used. Results show various important and interrelated trends, such as significant increases of the coefficient in regions of large strain-rate self-amplification and vortex stretching. Results also show that the joint dependence on the parameters is rather complicated and cannot be described by products of functions that depend on single parameters. Dependence on locally defined parameters is expected to improve the SGS model by sensitizing it to local flow conditions and by enabling possible generalizations of the dynamic model based on conditional averaging.


Sign in / Sign up

Export Citation Format

Share Document