bulk model
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Mohammad R. Momeni ◽  
Dil K. Limbu ◽  
Sara Abdelhamid ◽  
Shaina Pearson ◽  
Farnaz A. Shakib

Most of chemistry in nanoporous materials with small pore sizes and windows is known to occur on the surface which is in immediate contact with substrate/solvent, rather than inside pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics simulations on deciphering the intermolecular hydrogen bond network of water on outer surface of a nanoparticle model of ZIF-8 vs. inner surfaces of its pristine crystalline bulk model. Using a finite ~5.1 nm nanoparticle model with edges containing under--coordinated Zn2+ metal sites we show that water exposed to the surface of the nanoparticle exhibits both interfacial and bulk-like characters. Furthermore, we illustrate that as water content increases larger droplets are formed with water molecules starting to diffuse into the nanopores. While the confined water in the crystalline bulk simulations is pushed to the vacant pores due to hydrophobic inner surfaces, the outer surface water molecules form chemical bonds with under--coordinated Zn2+ metal sites which act as nucleation sites for the water droplets to form and hence making the surface hydrophilic. By adapting a similar mechanism to the dangling linker defect formation mechanism, we probe the tendency of the outer surface of ZIF-8 nanoparticles to water attack and hydrolysis. Results presented in this work are useful in designing more robust materials for applications in humid environments.


2021 ◽  
Vol 931 (1) ◽  
pp. 012002
Author(s):  
A Pituganova ◽  
I Minkhanov ◽  
A Bolotov ◽  
M Varfolomeev

Abstract Thermal enhanced oil recovery techniques, especially steam injection, are the most successful techniques for extra heavy crude oil reservoirs. Steam injection and its variations are based on the decrease in oil viscosity with increasing temperature. The main objective of this study is the development of advanced methods for the production of extra heavy crude oil in the oilfield of the Republic of Tatarstan. The filtration experiment was carried out on a bulk model of non-extracted core under reservoir conditions. The experiment involves the injection of slugs of fresh water, hot water and steam. At the stage of water injection, no oil production was observed while during steam injection recovery factor (RF) achieved 13.4 % indicating that fraction of immobile oil and non-vaporizing residual components is high and needed to be recovered by steam assisted EORs.


2021 ◽  
Author(s):  
Maximilian Semmling ◽  
Jens Wickert ◽  
Frederik Kreß ◽  
Mainul Hoque ◽  
Dmitry Divine ◽  
...  

<p>The dielectric properties of sea ice differ significantly from the open-water surface when we consider the L-band frequency range of GNSS signals. In contrast to water, the signal’s penetration into sea ice can reach several decimeters depending on properties like salinity, temperature and thickness. Exploiting these different dielectric properties is a key to use GNSS for sea-ice remote sensing. For this purpose, GNSS reflectometry measurements have been conducted over the Arctic Ocean during the MOSAiC expedition (Multidisciplinary drifting Observatory for the Study of Arctic Climate). A combined receiver setup was used that allows the here described reflectometry study and another study for atmosphere sounding. The setup was mounted, in close cooperation with the Alfred-Wegener-Institute (AWI), on the German research icebreaker Polarstern that drifted during nine months of the expedition with the Arctic sea ice.</p><p>Here, an initial study is presented that focuses on the expedition’s first leg in autumn 2019 when the ship started drifting at about 85°N to 87°N in the Siberian Sector of the Arctic. Profiles of sea-ice reflectivity are derived with daily resolution considering reflection data recorded at left-handed (LH) and right-handed (RH) circular polarization. Respective model predictions of reflectivity are assuming a sea-ice bulk medium or a sea-ice slab. The later allows to include the effect of signal penetration down to the underlying water. Results of comparison between LH profiles and bulk model confirm the reflectivity contrast (about 10 dB) between sea ice and water. The particularly low level of LH reflectivity in the late observation period (December 2019) indicates the presence of low-saline multiyear (MY) ice. A bias due to snow accumulating on the ice surface may occur. A snow-extended reflection model, driven by additional snow data, can help in future for clarification.</p><p>Anomalies of observed reflectivity with respect to bulk model predictions are especially obvious at lowest elevation angles. According to the model, the slope of profiles at low elevations is about 1.0 to 1.2 dB/°. The observation shows significantly lower values (< 0.5 dB/°) including negative slopes. A comparison of LH results with the ice slab model provides clarification. The anomalies are induced by signal penetration leading to interference pattern of reflections from the ice’s surface and bottom. Slope retrievals quantify the anomaly and allow a coarse estimation of the mean sea-ice temperature (about -10°C in December 2019) based on the slab model predictions. Further investigations are needed to better understand sea-ice reflectivity at RH polarization. RH profiles show a response to sea ice and features at low elevation angles that cannot be explained by current reflection models.</p><p>As a conclusion, GNSS reflectometry is sensitive to dielectric sea-ice properties. Estimates of ice type/salinity and temperature are reported based on LH observation data. These findings will be exploited to further strengthen the application of GNSS signals for sea-ice remote sensing. Future studies on GNSS observations from ships and satellites are anticipated.</p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinglong Ye ◽  
Harish K. Singh ◽  
Hongbin Zhang ◽  
Holger Geßwein ◽  
Mohammed Reda Chellali ◽  
...  

Abstract Owing to electric-field screening, the modification of magnetic properties in ferromagnetic metals by applying small voltages is restricted to a few atomic layers at the surface of metals. Bulk metallic systems usually do not exhibit any magneto-electric effect. Here, we report that the magnetic properties of micron-scale ferromagnetic metals can be modulated substantially through electrochemically-controlled insertion and extraction of hydrogen atoms in metal structure. By applying voltages of only ~ 1 V, we show that the coercivity of micrometer-sized SmCo5, as a bulk model material, can be reversibly adjusted by ~ 1 T, two orders of magnitudes larger than previously reported. Moreover, voltage-assisted magnetization reversal is demonstrated at room temperature. Our study opens up a way to control the magnetic properties in ferromagnetic metals beyond the electric-field screening length, paving its way towards practical use in magneto-electric actuation and voltage-assisted magnetic storage.


2020 ◽  
Vol 17 (34) ◽  
pp. 769-781 ◽  
Author(s):  
Karina Shamilevna KHAIBULLINA ◽  
Grigory Yurievich KOROBOV ◽  
Aleksandr Viktorovich LEKOMTSEV

The problem of the formation of asphalt-resin-paraffin deposits (ARPD) in oil fields within the “well – bottom-hole formation zone” system is still relevant. To prevent the formation of ARPD in the “bottom-hole formation zone – well” system, the ARPD inhibitors must have high adsorption and low desorption properties concerning the rock. The composition of inhibitors often includes surfactants. Nonionic surfactants, namely, polyesters, are widely used to prevent the formation of ARPD. However, currently, little is known about inhibitors with a combined effect, for example, possessing depressor-dispersing properties for ARPD. This work aimed to develop a combined inhibitor possessing not only depressor-dispersing properties but also having good adsorption and desorption properties to the rock to prevent the formation of ARPD. The paper presents the research results on the development of an ARPD inhibitor, as well as the effects of determination of its depressor dispersing, inhibiting, and corrosive properties; the temperature of oil saturation with paraffin is determined as well. The studies of the ARPD inhibitor adsorption were carried out by the static and dynamic methods. In contrast, the process of the inhibitor desorption was studied by oil filtering through a saturated sample of the rock using a bulk model and core material. The impact of the fluid flow rate on the inhibitor desorption rate was studied. The technological parameters of the ARPD inhibitor solution injection into the bottom-hole formation zone of production wells were calculated. The developed composition has high inhibiting properties concerning the ARPD, depressor dispersing properties, low corrosive activity for a metal surface, and is capable of lowering the temperature of oil saturation with paraffin.


2020 ◽  
Vol 38 (2) ◽  
pp. 023003 ◽  
Author(s):  
Emi Kawamura ◽  
Michael A. Lieberman ◽  
Allan J. Lichtenberg ◽  
Pascal Chabert

2019 ◽  
Vol 49 (11) ◽  
pp. 2961-2978 ◽  
Author(s):  
Natasha S. Lucas ◽  
Alan L. M. Grant ◽  
Tom P. Rippeth ◽  
Jeff A. Polton ◽  
Matthew R. Palmer ◽  
...  

AbstractUnderstanding the processes that control the evolution of the ocean surface boundary layer (OSBL) is a prerequisite for obtaining accurate simulations of air–sea fluxes of heat and trace gases. Observations of the rate of dissipation of turbulent kinetic energy (ε), temperature, salinity, current structure, and wave field over a period of 9.5 days in the northeast Atlantic during the Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS) are presented. The focus of this study is a storm that passed over the observational area during this period. The profiles of ε in the OSBL are consistent with profiles from large-eddy simulation (LES) of Langmuir turbulence. In the transition layer (TL), at the base of the OSBL, ε was found to vary periodically at the local inertial frequency. A simple bulk model of the OSBL and a parameterization of shear driven turbulence in the TL are developed. The parameterization of ε is based on assumptions about the momentum balance of the OSBL and shear across the TL. The predicted rate of deepening, heat budget, and the inertial currents in the OSBL were in good agreement with the observations, as is the agreement between the observed value of ε and that predicted using the parameterization. A previous study reported spikes of elevated dissipation related to enhanced wind shear alignment at the base of the OSBL after this storm. The spikes in dissipation are not predicted by this new parameterization, implying that they are not an important source of dissipation during the storm.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xuesi Wang ◽  
Chaochen Xu ◽  
Mietek Jaroniec ◽  
Yao Zheng ◽  
Shi-Zhang Qiao

Abstract Most fundamental studies of electrocatalysis are based on the experimental and simulation results obtained for bulk model materials. Some of these mechanistic understandings are inapplicable for more active nanostructured electrocatalysts. Herein, considering the simplest and most typical electrocatalytic process, the hydrogen evolution reaction, an alternative reaction mechanism is proposed for nanomaterials based on the identification of a new intermediate, which differs from those commonly known for the bulk counterparts. In-situ Raman spectroscopy and electrochemical thermal/kinetic measurements were conducted on a series of nanomaterials under different conditions. In high-pH electrolytes with negligible hydronium (H3O+) concentration in bulk phase, massive H3O+ intermediates are found generating on the catalytic surface during water dissociation and hydrogen adsorption processes. These H3O+ intermediates create a unique acid-like local reaction environment on nanostructured catalytic surfaces and cut the energy barrier of the overall reaction. Such phenomena on nanostructured electrocatalysts explain their widely observed anomalously high activity under high-pH conditions.


ACS Omega ◽  
2019 ◽  
Vol 4 (9) ◽  
pp. 13795-13807 ◽  
Author(s):  
Franca A. L. Janssen ◽  
Michael Kather ◽  
Agnieszka Ksiazkiewicz ◽  
Andrij Pich ◽  
Alexander Mitsos

Author(s):  
Borana Kullolli ◽  
Matthias Baeßler ◽  
Pablo Cuéllar ◽  
Shilton Rica ◽  
Frank Rackwitz

Abstract The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to micro-phenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor-Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena.


Sign in / Sign up

Export Citation Format

Share Document