Local Structure of Turbulence in Stably Stratified Boundary Layers

2006 ◽  
Vol 63 (5) ◽  
pp. 1526-1537 ◽  
Author(s):  
Zbigniew Sorbjan

Abstract The “flux based” local scaling in the stably stratified boundary layer is valid only in cases with strong, continuous turbulence, when the gradient Richardson number Ri is constant and subcritical. To extend the local similarity approach to cases with weak turbulence (very stable regime), the “gradient based” local scaling is introduced and discussed in the paper. Both types of local scaling, the flux based and the gradient based, are tested based on the data, collected from a 60-m tower during the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99). The obtained results show that the gradient-based scaling provides a useful framework for the treatment of cases with both strong and weak turbulence and overcritical Richardson numbers.

2012 ◽  
Vol 147 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Andrey A. Grachev ◽  
Edgar L Andreas ◽  
Christopher W. Fairall ◽  
Peter S. Guest ◽  
P. Ola G. Persson

2012 ◽  
Vol 69 (1) ◽  
pp. 338-351 ◽  
Author(s):  
Jielun Sun ◽  
Larry Mahrt ◽  
Robert M. Banta ◽  
Yelena L. Pichugina

Abstract An investigation of nocturnal intermittent turbulence during the Cooperative Atmosphere–Surface Exchange Study in 1999 (CASES-99) revealed three turbulence regimes at each observation height: 1) regime 1, a weak turbulence regime when the wind speed is less than a threshold value; 2) regime 2, a strong turbulence regime when the wind speed exceeds the threshold value; and 3) regime 3, a moderate turbulence regime when top-down turbulence sporadically bursts into the otherwise weak turbulence regime. For regime 1, the strength of small turbulence eddies is correlated with local shear and weakly related to local stratification. For regime 2, the turbulence strength increases systematically with wind speed as a result of turbulence generation by the bulk shear, which scales with the observation height. The threshold wind speed marks the transition above which the boundary layer approaches near-neutral conditions, where the turbulent mixing substantially reduces the stratification and temperature fluctuations. The preference of the turbulence regimes during CASES-99 is closely related to the existence and the strength of low-level jets. Because of the different roles of the bulk and local shear with regard to turbulence generation under different wind conditions, the relationship between turbulence strength and the local gradient Richardson number varies for the different turbulence regimes. Turbulence intermittency at any observation height was categorized in three ways: turbulence magnitude oscillations between regimes 1 and 2 as wind speed varies back and forth across its threshold value, episodic turbulence enhancements within regime 1 as a result of local instability, and downbursts of turbulence in regime 3.


Author(s):  
O. O. Ajileye ◽  
M. A. Ayoola

Meteorological data including air temperature and wind speed which were collected from DACCIWA measurement site at a tropical agricultural field site in Ile-Ife (7.55oE, 4.56oE), south-western Nigeria have been used to classify boundary layer stability regimes using gradient Richardson number. Three categories were considered to deduce the pattern of stability conditions namely stable, unstable and neutral conditions for 3-hourly intervals at 0.00, 03.00, 06.00, 09.00, 12.00, 15.00, 18.00 and 21.00 hours from 15th June to 31st July 2016. The data were sampled every 1sec and stored subsequently as 10 minutes averages for all the measured parameters. The data was further reduced to 30 minutes averages for easy analysis and manipulation in the calculation of gradient Richardson number used for boundary layer stability regime characterization. The results showed that the month of June 2016 had prevalence of stable regime from 0:00 – 6:00 am and 6:00 pm; 9:00 am was predominantly neutral and shared similar pattern with 9:00 pm. Unstable regime was slightly observed at 12:00 pm and majorly observed at 3:00 pm. The month of July had a little shift from what was observed in the month of June. Predominance of neutral conditions was observed from 9:00 pm to 9:00 am; Hours of 12:00 – 3:00 pm were dominated by unstable regime while 6:00 pm was dominated by stable regime.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2012 ◽  
Vol 69 (11) ◽  
pp. 3097-3115 ◽  
Author(s):  
B. J. H. Van de Wiel ◽  
A. F. Moene ◽  
H. J. J. Jonker

Abstract The mechanism behind the collapse of turbulence in the evening as a precursor to the onset of the very stable boundary layer is investigated. To this end a cooled, pressure-driven flow is investigated by means of a local similarity model. Simulations reveal a temporary collapse of turbulence whenever the surface heat extraction, expressed in its nondimensional form h/L, exceeds a critical value. As any temporary reduction of turbulent friction is followed by flow acceleration, the long-term state is unconditionally turbulent. In contrast, the temporary cessation of turbulence, which may actually last for several hours in the nocturnal boundary layer, can be understood from the fact that the time scale for boundary layer diffusion is much smaller than the time scale for flow acceleration. This limits the available momentum that can be used for downward heat transport. In case the surface heat extraction exceeds the so-called maximum sustainable heat flux (MSHF), the near-surface inversion rapidly increases. Finally, turbulent activity is largely suppressed by the intense density stratification that supports the emergence of a different, calmer boundary layer regime.


1970 ◽  
Vol 42 (2) ◽  
pp. 349-365 ◽  
Author(s):  
Robert R. Long

An effort is made to understand turbulence in fluid systems like the oceans and atmosphere in which the Richardson number is generally large. Toward this end, a theory is developed for turbulent flow over a flat plate which is moved and cooled in such a way as to produce constant vertical fluxes of momentum and heat. The theory indicates that in a co-ordinate system fixed in the plate the mean velocity increases linearly with heightzabove a turbulent boundary layer and the mean density decreases asz3, so that the Richardson number is large far from the plate. Near the plate, the results reduce to those of Monin & Obukhov.Thecurvatureof the density profile is essential in the formulation of the theory. When the curvature is negative, a volume of fluid, thoroughly mixed by turbulence, will tend to flatten out at a new level well above the original centre of mass, thereby transporting heat downward. When the curvature is positive a mixed volume of fluid will tend to fall a similar distance, again transporting heat downward. A well-mixed volume of fluid will also tend to rise when the density profile is linear, but this rise is negligible on the basis of the Boussinesq approximation. The interchange of fluid of different, mean horizontal speeds in the formation of the turbulent patch transfers momentum. As the mixing in the patch destroys the mean velocity shear locally, kinetic energy is transferred from mean motion to disturbed motion. The turbulence can arise in spite of the high Richardson number because the precise variations of mean density and mean velocity mentioned above permit wave energy to propagate from the turbulent boundary layer to the whole region above the plate. At the levels of reflexion, where the amplitudes become large, wave-breaking and turbulence will tend to develop.The relationship between the curvature of the density profile and the transfer of heat suggests that the density gradient near the level of a point of inflexion of the density curve (in general cases of stratified, shearing flow) will increase locally as time goes on. There will also be a tendency to increase the shear through the action of local wave stresses. If this results in a progressive reduction in Richardson number, an ultimate outbreak of Kelvin–Helmholtz instability will occur. The resulting sporadic turbulence will transfer heat (and momentum) through the level of the inflexion point. This mechanism for the appearance of regions of low Richardson number is offered as a possible explanation for the formation of the surfaces of strong density and velocity differences observed in the oceans and atmosphere, and for the turbulence that appears on these surfaces.


Sign in / Sign up

Export Citation Format

Share Document