Accelerated Changes of Environmental Conditions on the Tibetan Plateau Caused by Climate Change

2011 ◽  
Vol 24 (24) ◽  
pp. 6540-6550 ◽  
Author(s):  
Lei Zhong ◽  
Zhongbo Su ◽  
Yaoming Ma ◽  
Mhd. Suhyb Salama ◽  
José A. Sobrino

Abstract Variations of land surface parameters over the Tibetan Plateau have great importance on local energy and water cycles, the Asian monsoon, and climate change studies. In this paper, the NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer (AVHRR) Land (PAL) dataset is used to retrieve the land surface temperature (LST), the normalized difference vegetation index (NDVI), and albedo, from 1982 to 2000. Simultaneously, meteorological parameters and land surface heat fluxes are acquired from the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) dataset and the Global Land Data Assimilation System (GLDAS), respectively. Results show that from 1982 to 2000 both the LST and the surface air temperature increased on the Tibetan Plateau (TP). The rate of increase of the LST was 0.26±0.16 K decade−1 and that of the surface air temperature was 0.29 ± 0.16 K decade−1, which exceeded the increase in the Northern Hemisphere (0.054 K decade−1). The plateau-wide annual mean precipitation increased at 2.54 mm decade−1, which indicates that the TP is becoming wetter. The 10-m wind speed decreased at about 0.05±0.03 m s−1 decade−1 from 1982 to 2000, which manifests a steady decline of the Asian monsoon wind. Due to the diminishing ground–air temperature gradient and subdued surface wind speed, the sensible heat flux showed a decline of 3.37 ± 2.19 W m−2 decade−1. The seasonal cycle of land surface parameters could clearly be linked to the patterns of the Asian monsoon. The spatial patterns of sensible heat flux, latent heat flux, and their variance could also be recognized.

2021 ◽  
Author(s):  
Lian Liu ◽  
Yaoming Ma ◽  
Massimo Menenti ◽  
Rongmingzhu Su ◽  
Nan Yao ◽  
...  

Abstract. Snow albedo is important to the land surface energy balance and to the water cycle. During snowfall and subsequent snowmelt, snow albedo is usually parameterized as functions of snow related variables in land surface models. However, the default snow albedo scheme in the widely used Noah land surface model shows evident shortcomings in land-atmosphere interactions estimates during snow events on the Tibetan Plateau. Here, we demonstrate that our improved snow albedo scheme performs well after including snow depth as an additional factor. By coupling the WRF and Noah models, this study comprehensively evaluates the performance of the improved snow albedo scheme in simulating eight snow events on the Tibetan Plateau. The modeling results are compared with WRF run with the default Noah scheme and in situ observations. The improved snow albedo scheme significantly outperforms the default Noah scheme in relation to air temperature, albedo and sensible heat flux estimates, by alleviating cold bias estimates, albedo overestimates and sensible heat flux underestimates, respectively. This in turn contributes to more accurate reproductions of snow event evolution. The averaged RMSE relative reductions (and relative increase in correlation coefficients) for air temperature, albedo, sensible heat flux and snow depth reach 27 % (5 %), 32 % (69 %), 13 % (17 %) and 21 % (108 %) respectively. These results demonstrate the strong potential of our improved snow albedo parameterization scheme for snow event simulations on the Tibetan Plateau. Our study provides a theoretical reference for researchers committed to further improving the snow albedo parameterization scheme.


2021 ◽  
Vol 25 (9) ◽  
pp. 4967-4981
Author(s):  
Lian Liu ◽  
Yaoming Ma ◽  
Massimo Menenti ◽  
Rongmingzhu Su ◽  
Nan Yao ◽  
...  

Abstract. Snow albedo is important to the land surface energy balance and to the water cycle. During snowfall and subsequent snowmelt, snow albedo is usually parameterized as functions of snow-related variables in land surface models. However, the default snow albedo scheme in the widely used Noah land surface model shows evident shortcomings in land–atmosphere interaction estimates during snow events on the Tibetan Plateau. Here, we demonstrate that our improved snow albedo scheme performs well after including snow depth as an additional factor. By coupling the Weather Research and Forecasting (WRF) and Noah models, this study comprehensively evaluates the performance of the improved snow albedo scheme in simulating eight snow events on the Tibetan Plateau. The modeling results are compared with WRF run with the default Noah scheme and in situ observations. The improved snow albedo scheme significantly outperforms the default Noah scheme in relation to air temperature, albedo and sensible heat flux estimates by alleviating cold bias estimates, albedo overestimates and sensible heat flux underestimates, respectively. This in turn contributes to more accurate reproductions of snow event evolution. The averaged root mean square error (RMSE) relative reductions (and relative increase in correlation coefficients) for air temperature, albedo, sensible heat flux and snow depth reach 27 % (5 %), 32 % (69 %), 13 % (17 %) and 21 % (108 %), respectively. These results demonstrate the strong potential of our improved snow albedo parameterization scheme for snow event simulations on the Tibetan Plateau. Our study provides a theoretical reference for researchers committed to further improving the snow albedo parameterization scheme.


2007 ◽  
Vol 46 (2) ◽  
pp. 183-195 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Zhongbo Su

Abstract A Surface Energy Balance System (SEBS) originally developed for the NOAA Advanced Very High Resolution Radiometer was applied to Geostationary Meteorological Satellite (GMS)-5 Visible/Infrared Spin-Scan Radiometer data that were supplemented with other meteorological data. GMS-5, which is a geostationary satellite, recorded continuous hourly information. Surface temperatures obtained from the GMS-5 data were entered into SEBS to estimate the hourly regional distribution of the surface heat fluxes over the Tibetan Plateau. The estimated fluxes are verified by using corresponding field observations. The diurnal cycle of estimated fluxes agreed well with the field measurements. For example, the diurnal range of the estimated sensible heat flux decreases from June to August. This reflects the change of dry to wet surface characteristics resulting from frequent precipitation during the summer monsoon. Over the Tibetan Plateau, the diurnal range of the surface temperature is as large as the annual range, so that the resultant sensible heat flux has a large diurnal variation. Thus, the hourly estimation based on the GMS data may contribute to a better understanding of the land surface–atmosphere interaction in this critical area.


2009 ◽  
Vol 48 (12) ◽  
pp. 2474-2486 ◽  
Author(s):  
Kun Yang ◽  
Jun Qin ◽  
Xiaofeng Guo ◽  
Degang Zhou ◽  
Yaoming Ma

Abstract To clarify the thermal forcing of the Tibetan Plateau, long-term coarse-temporal-resolution data from the China Meteorological Administration have been widely used to estimate surface sensible heat flux by bulk methods in many previous studies; however, these estimates have seldom been evaluated against observations. This study at first evaluates three widely used bulk schemes against Tibet instrumental flux data. The evaluation shows that large uncertainties exist in the heat flux estimated by these schemes; in particular, upward heat fluxes in winter may be significantly underestimated, because diurnal variations of atmospheric stability were not taken into account. To improve the estimate, a new method is developed to disaggregate coarse-resolution meteorological data to hourly according to statistical relationships derived from high-resolution experimental data, and then sensible heat flux is estimated from the hourly data by a well-validated flux scheme. Evaluations against heat flux observations in summer and against net radiation observations in winter indicate that the new method performs much better than previous schemes, and therefore it provides a robust basis for quantifying the Tibetan surface energy budget.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 3997-4009 ◽  
Author(s):  
Lihua Zhu ◽  
Gang Huang ◽  
Guangzhou Fan ◽  
Xia Qü ◽  
Zhibiao Wang ◽  
...  

2006 ◽  
Vol 19 (12) ◽  
pp. 2995-3003 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Shigenori Haginoya ◽  
Yaoming Ma

Abstract The diurnal, seasonal, and interannual variations in land surface temperature (LST) on the Tibetan Plateau from 1996 to 2002 are analyzed using the hourly LST dataset obtained by Japanese Geostationary Meteorological Satellite 5 (GMS-5) observations. Comparing LST retrieved from GMS-5 with independent precipitation amount data demonstrates the consistent and complementary relationship between them. The results indicate an increase in the LST over this period. The daily minimum has risen faster than the daily maximum, resulting in a narrowing of the diurnal range of LST. This is in agreement with the observed trends in both global and plateau near-surface air temperature. Since the near-surface air temperature is mainly controlled by LST, this result ensures a warming trend in near-surface air temperature.


2016 ◽  
Vol 29 (14) ◽  
pp. 5123-5139 ◽  
Author(s):  
Anna L. Merrifield ◽  
Shang-Ping Xie

Abstract This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental United States in the Atmospheric Model Intercomparison Project (AMIP) experiment from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-yr period (1979–2008). Regions of high SAT variability are closely associated with midtropospheric highs, subsidence, and radiative heating accompanying clear-sky conditions. The land surface exerts a spatially variable influence on SAT through the sensible heat flux and is a second-order effect in the high-variability centers of action (COAs) in observational estimates. The majority of the AMIP models feature high SAT variability over the central United States, displaced south and/or west of observed COAs. SAT COAs in models tend to be concomitant and strongly coupled with regions of high sensible heat flux variability, suggesting that excessive land–atmosphere interaction in these models modulates U.S. summer SAT. In the central United States, models with climatological warm biases also feature less evapotranspiration than ERA-Interim but reasonably reproduce observed SAT variability in the region. Models that overestimate SAT variability tend to reproduce ERA-Interim SAT and evapotranspiration climatology. In light of potential model biases, this analysis calls for careful evaluation of the land–atmosphere interaction hot spot region identified in the central United States. Additionally, tropical sea surface temperatures play a role in forcing the leading EOF mode for summer SAT in models. This relationship is not apparent in observations.


2021 ◽  
Vol 13 (2) ◽  
pp. 256
Author(s):  
Usman Mazhar ◽  
Shuanggen Jin ◽  
Wentao Duan ◽  
Muhammad Bilal ◽  
Md. Arfan Ali ◽  
...  

Being the highest and largest land mass of the earth, the Tibetan Plateau has a strong impact on the Asian climate especially on the Asian monsoon. With high downward solar radiation, the Tibetan Plateau is a climate sensitive region and the main water source for many rivers in South and East Asia. Although many studies have analyzed energy fluxes in the Tibetan Plateau, a long-term detailed spatio-temporal variability of all energy budget parameters is not clear for understanding the dynamics of the regional climate change. In this paper, satellite remote sensing and reanalysis data are used to quantify spatio-temporal trends of energy budget parameters, net radiation, latent heat flux, and sensible heat flux over the Tibetan Plateau from 2001 to 2019. The validity of both data sources is analyzed from in situ ground measurements of the FluxNet micrometeorological tower network, which verifies that both datasets are valid and reliable. It is found that the trend of net radiation shows a slight increase. The latent heat flux increases continuously, while the sensible heat flux decreases continuously throughout the study period over the Tibetan Plateau. Varying energy fluxes in the Tibetan plateau will affect the regional hydrological cycle. Satellite LE product observation is limited to certain land covers. Thus, for larger spatial areas, reanalysis data is a more appropriate choice. Normalized difference vegetation index proves a useful indicator to explain the latent heat flux trend. Despite the reduction of sensible heat, the atmospheric temperature increases continuously resulting in the warming of the Tibetan Plateau. The opposite trend of sensible heat flux and air temperature is an interesting and explainable phenomenon. It is also concluded that the surface evaporative cooling is not the indicator of atmospheric cooling/warming. In the future, more work shall be done to explain the mechanism which involves the complete heat cycle in the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document