scholarly journals U.S. Diurnal Temperature Range Variability and Regional Causal Mechanisms, 1901–2002

2012 ◽  
Vol 25 (20) ◽  
pp. 7216-7231 ◽  
Author(s):  
Ryan G. Lauritsen ◽  
Jeffrey C. Rogers

Abstract Long-term (1901–2002) diurnal temperature range (DTR) data are evaluated to examine their spatial and temporal variability across the United States; the early century origin of the DTR declines; and the relative regional contributions to DTR variability among cloud cover, precipitation, soil moisture, and atmosphere/ocean teleconnections. Rotated principal component analysis (RPCA) of the Climatic Research Unit (CRU) Time Series (TS) 2.1 dataset identifies five regions of unique spatial U.S. DTR variability. RPCA creates regional orthogonal indices of cloud cover, soil moisture, precipitation, and the teleconnections used subsequently in stepwise multiple linear regression to examine their regional impact on DTR, maximum temperature (Tmax), and minimum temperature (Tmin). The southwestern United States has the smallest DTR and cloud cover trends as both Tmax and Tmin increase over the century. The Tmin increases are the primary influence on DTR trend in other regions, except in the south-central United States, where downward Tmax trend largely affects its DTR decline. The Tmax and DTR tend to both exhibit simultaneous decadal variations during unusually wet and dry periods in response to cloud cover, soil moisture, and precipitation variability. The widely reported post-1950 DTR decline began regionally at various times ranging from around 1910 to the 1950s. Cloud cover alone accounts for up to 63.2% of regional annual DTR variability, with cloud cover trends driving DTR in northern states. Cloud cover, soil moisture, precipitation, and atmospheric/oceanic teleconnection indices account for up to 80.0% of regional variance over 1901–2002 (75.4% in detrended data), although the latter only account for small portions of this variability.

2008 ◽  
Vol 21 (19) ◽  
pp. 5061-5075 ◽  
Author(s):  
Simone Dietmüller ◽  
Michael Ponater ◽  
Robert Sausen ◽  
Klaus-Peter Hoinka ◽  
Susanne Pechtl

Abstract The direct impact of aircraft condensation trails (contrails) on surface temperature in regions of high aircraft density has been a matter of recent debate in climate research. Based on data analysis for the 3-day aviation grounding period over the United States, following the terrorists’ attack of 11 September 2001, a strong effect of contrails reducing the surface diurnal temperature range (DTR) has been suggested. Simulations with the global climate model ECHAM4 (including a contrail parameterization) and long-term time series of observation-based data are used for an independent cross check with longer data records, which allow statistically more reliable conclusions. The climate model underestimates the overall magnitude of the DTR compared to 40-yr ECMWF Re-Analysis (ERA-40) data and station data, but it captures most features of the DTR global distribution and the correlation between DTR and either cloud amount or cloud forcing. The diurnal cycle of contrail radiative impact is also qualitatively consistent with expectations, both at the surface and at the top of the atmosphere. Nevertheless, there is no DTR response to contrails in a simulation that inhibits a global radiative forcing considerably exceeding the upper limit of contrail radiative impact according to current assessments. Long-term trends of DTR, the level of natural DTR variability, and the specific effect of high clouds on DTR are also analyzed. In both ECHAM4 and ERA-40 data, the correlation of cloud coverage or cloud radiative forcing with the DTR is mainly apparent for low clouds. None of the results herein indicates a significant impact of contrails on reducing the DTR. Hence, it is concluded that the respective hypothesis as derived from the 3-day aviation-free period over the United States lacks the required statistical backing.


2010 ◽  
Vol 23 (12) ◽  
pp. 3205-3221 ◽  
Author(s):  
Lawrence S. Jackson ◽  
Piers M. Forster

Abstract The diurnal temperature range (DTR) of surface air over land varies geographically and seasonally. The authors have investigated these variations using generalized additive models (GAMs), a nonlinear regression methodology. With DTR as the response variable, meteorological and land surface parameters were treated as explanatory variables. Regression curves related the deviation of DTR from its mean value to values of the meteorological and land surface variables. Cloud cover, soil moisture, distance inland, solar radiation, and elevation were combined as explanatory variables in an ensemble of 84 GAM models that used data grouped into seven vegetation types and 12 months. The ensemble explained 80% of the geographical and seasonal variation in DTR. Vegetation type and cloud cover exhibited the strongest relationships with DTR. Shortwave radiation, distance inland, and elevation were positively correlated with DTR, whereas cloud cover and soil moisture were negatively correlated. A separate analysis of the surface energy budget showed that changes in net longwave radiation represented the effects of solar and hydrological variation on DTR. It is found that vegetation and its associated climate is important for DTR variation in addition to the climatic influence of cloud cover, soil moisture, and solar radiation. It is also found that surface net longwave radiation is a powerful diagnostic of DTR variation, explaining over 95% of the seasonal variation of DTR in tropical regions.


Climate ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 89 ◽  
Author(s):  
Andri Pyrgou ◽  
Mattheos Santamouris ◽  
Iro Livada

High daily temperatures in the Mediterranean and Europe have been documented in observation and modeling studies. Long-term temperature data, from 1988 to 2017, from a suburban station and an urban station in Nicosia, Cyprus have been analyzed, and the diurnal temperature range (DTR) trend was investigated. The seasonal Mann–Kendall test revealed a decreasing DTR trend of −0.24 °C/decade at the urban station and −0.36 °C/decade at the suburban station, which were attributed to an increase in the daily minimum temperature. Variations in precipitation, longwave radiation, ultraviolet-A (UVA), ultraviolet-B (UVB), cloud cover, water vapor, and urbanization were used to assess their possible relationship with regional DTR. The clustering of daytime and night-time data showed a strong relationship between the DTR and observed cloud cover, net longwave radiation, and precipitation. Clouds associated with smaller shortwave and net longwave radiation reduce the DTR by decreasing the surface solar radiation, while atmospheric absolute humidity denotes an increased daytime surface evaporative cooling and higher absorption of the short and longwave radiation. The intra-cluster variation could be reduced, and the inter-cluster variance increased by the addition of other meteorological parameters and anthropogenic sources that affect DTR in order to develop a quantitative basis for assessing DTR variations.


2013 ◽  
Vol 31 (5) ◽  
pp. 795-804 ◽  
Author(s):  
X. Xia

Abstract. This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954–2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954–2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30–60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.


Sign in / Sign up

Export Citation Format

Share Document