scholarly journals Realism of Rainfall in a Very High-Resolution Regional Climate Model

2012 ◽  
Vol 25 (17) ◽  
pp. 5791-5806 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nigel M. Roberts ◽  
Catherine A. Senior ◽  
Malcolm J. Roberts

Abstract The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change. In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall. Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection.

2012 ◽  
Vol 117 (D2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Philippe Lucas-Picher ◽  
Maria Wulff-Nielsen ◽  
Jens H. Christensen ◽  
Guðfinna Aðalgeirsdóttir ◽  
Ruth Mottram ◽  
...  

2020 ◽  
Author(s):  
Petter Lind ◽  
Danijel Belušić ◽  
Erik Kjellström ◽  
Fuxing Wang ◽  
Erika Toivonen ◽  
...  

<p>There is an increased need for more detailed climate information from impact researchers, stakeholders and policy makers for regional-to-local climate change assessments. In order to design relevant and informative planning strategies on these scales it is important to have reliable climate data and information on high spatial O(1km) and temporal (daily to sub-daily) scales. Such high-resolution data is also beneficial for climate impact modellers as input to their models, e.g. hydrological or urban models that operate on regional to local scales. It has been established that regional climate models (RCMs) provide added value compared to coarser global climate models (GCMs) or re-analysis (e.g. ERA-Interim). However, RCMs with standard spatial resolution O(10 − 50km) still suffer from inadequacies in representing important regional-to-local climate phenomena and characteristics, both from the implied ”smoothening” effect within each grid cell which limits the representation of fine scale surface forcings, and the need to parameterize small-scale processes like atmospheric convection. The latter particularly invokes uncertainties in future climate responses of short-duration precipitation extremes such as flash-floods. Here, we compare 20-year simulations with a very high resolution (3 km grid spacing) convection permitting regional climate model (CPRCM) with a standard high-resolution (12 km grid spacing) convection parameterized RCM and their abilities to simulate the climate characteristics of the Nordic region in Europe, with particular focus on precipitation extremes. The study covers both recent past (with boundary data from ERA-Interim and the EC-Earth GCM) and the end of the 21st century (boundary data from EC-Earth using the RCP8.5 radiative forcing scenario). The high model grid resolution combined with the extensive simulated time period which enables assessment on climatological time scales makes this study one of very few for this region.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 283
Author(s):  
Benjamin Schaaf ◽  
Frauke Feser ◽  
Insa Meinke

Long-term atmospheric changes are a result of complex interactions on various spatial scales. In this study, we examine the long-term variability of the most important meteorological variables in a convection-permitting regional climate model simulation. A consistent, gridded data set from 1948 to 2014 was computed using the regional climate model COSMO-CLM with a very high convection-permitting resolution at a grid distance of 2.8 km, for a region encompassing the German Bight and Northern Germany. This is one of the very first atmospheric model simulations with such high resolution, and covering several decades. Using a very high-resolution hindcast, this study aims to extend knowledge of the significance of regional details for long-term variability and multi-decadal trends of several meteorological variables such as wind, temperature, cloud cover, precipitation, and convective available potential energy (CAPE). This study demonstrates that most variables show merely large decadal variability and no long-term trends. The analysis shows that the most distinct and significant positive trends occur in temperature and in CAPE for annual mean values as well as for extreme events. No clear and no significant trend is detectable for the annual sum of precipitation and for extreme precipitation. However, spatial structures in the trends remain weak.


2020 ◽  
Author(s):  
Katrin Ziegler ◽  
Felix Pollinger ◽  
Daniel Abel ◽  
Heiko Paeth

<p class="western" align="justify"><span lang="en-US">In cooperation with the Climate Service Center Germany (GERICS) we want to improve the land surface module in the regional climate model REMO. Due to the need of high-resolution regional climate models to get information about local climate change, new data and new processes have to be integrated in these models.</span></p> <p class="western" align="justify"><span lang="en-US">Based on the REMO2015 version and focusing on EUR-CORDEX region we included and compared five different high-resolution topographic data sets. To improve the thermal and hydrological processes in the model’s soil we also tested three new soil data sets with a much higher spatial resolution and with new parameters for a new soil parameterization.</span></p>


2021 ◽  
Author(s):  
Jeremy Carter ◽  
Amber Leeson ◽  
Andrew Orr ◽  
Christoph Kittel ◽  
Melchior van Wessem

<p>Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.</p><p>Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.</p>


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 132-139
Author(s):  
Sheau Tieh Ngai ◽  
Hidetaka Sasaki ◽  
Akihiko Murata ◽  
Masaya Nosaka ◽  
Jing Xiang Chung ◽  
...  

2014 ◽  
Vol 41 (12) ◽  
pp. 4294-4299 ◽  
Author(s):  
Hylke de Vries ◽  
Geert Lenderink ◽  
Erik van Meijgaard

Sign in / Sign up

Export Citation Format

Share Document