scholarly journals Frequency Domain Multimodel Analysis of the Response of Atlantic Meridional Overturning Circulation to Surface Forcing

2013 ◽  
Vol 26 (21) ◽  
pp. 8323-8340 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Eli Tziperman ◽  
Laure Zanna

Abstract The dynamics of the Atlantic meridional overturning circulation (AMOC) vary considerably among different climate models; for example, some models show clear peaks in their power spectra while others do not. To elucidate these model differences, transfer functions are used to estimate the frequency domain relationship between surface forcing fields, including sea surface temperature, salinity, and wind stress, and the resulting AMOC response. These are estimated from the outputs of the Coupled Model Intercomparison Project phase 5 (CMIP5) and phase 3 (CMIP3) control runs for eight different models, with a specific focus on Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), and the Community Climate System Model, version 4 (CCSM4), which exhibit rather different spectral behavior. The transfer functions show very little agreement among models for any of the pairs of variables considered, suggesting the existence of systematic model errors and that considerable uncertainty in the simulation of AMOC in current climate models remains. However, a robust feature of the frequency domain analysis is that models with spectral peaks in their AMOC correspond to those in which AMOC variability is more strongly excited by high-latitude surface perturbations that have periods corresponding to the frequency of the spectral peaks. This explains why different models exhibit such different AMOC variability. These differences would not be evident without using a method that explicitly computes the frequency dependence rather than a priori assuming a particular functional form. Finally, transfer functions are used to evaluate two proposed physical mechanisms for model differences in AMOC variability: differences in Labrador Sea stratification and excitation by westward-propagating subsurface Rossby waves.

2015 ◽  
Vol 45 (7) ◽  
pp. 1929-1946 ◽  
Author(s):  
Sandy Grégorio ◽  
Thierry Penduff ◽  
Guillaume Sérazin ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

AbstractThe low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).


2018 ◽  
Vol 31 (13) ◽  
pp. 5165-5188 ◽  
Author(s):  
He Wang ◽  
Sonya Legg ◽  
Robert Hallberg

This study examines the relative roles of the Arctic freshwater exported via different pathways on deep convection in the North Atlantic and the Atlantic meridional overturning circulation (AMOC). Deep water feeding the lower branch of the AMOC is formed in several North Atlantic marginal seas, including the Labrador Sea, Irminger Sea, and the Nordic seas, where deep convection can potentially be inhibited by surface freshwater exported from the Arctic. The sensitivity of the AMOC and North Atlantic to two major freshwater pathways on either side of Greenland is studied using numerical experiments. Freshwater export is rerouted in global coupled climate models by blocking and expanding the channels along the two routes. The sensitivity experiments are performed in two sets of models (CM2G and CM2M) with different control simulation climatology for comparison. Freshwater via the route east of Greenland is found to have a larger direct impact on Labrador Sea convection. In response to the changes of freshwater route, North Atlantic convection outside of the Labrador Sea changes in the opposite sense to the Labrador Sea. The response of the AMOC is found to be sensitive to both the model formulation and mean-state climate.


2013 ◽  
Vol 9 (4) ◽  
pp. 1495-1504 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2013 ◽  
Vol 9 (2) ◽  
pp. 1297-1319 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in the PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2016 ◽  
Vol 29 (14) ◽  
pp. 5267-5280 ◽  
Author(s):  
Laurie Trenary ◽  
Timothy DelSole

Abstract This paper investigates the predictive relation between the Atlantic multidecadal oscillation (AMO) and Atlantic meridional overturning circulation across different climate models. Three overturning patterns that are significantly coupled to the AMO on interannual time scales across all climate models are identified using a statistical optimization technique. Including these structures in an autoregressive model extends AMO predictability by 2–9 years, relative to an autoregressive model without these structures.


2020 ◽  
Author(s):  
Emma L. Worthington ◽  
Ben I. Moat ◽  
David A. Smeed ◽  
Jennifer V. Mecking ◽  
Robert Marsh ◽  
...  

Abstract. A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012 by the RAPID array with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic research suggests that the AMOC may have been declining for decades or even centuries before this, however direct observations are sparse prior to 2004, giving only snapshots of the overturning circulation. Previous studies have used linear models based on upper layer temperature anomalies to extend AMOC estimates back in time, however these ignore changes in the deep circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher fidelity empirical model of AMOC variability based on RAPID data, and associated physically with changes in thickness of the persistent upper, intermediate and deep water masses at 26° N and associated transports. We applied historical hydrographic data to the empirical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC to approximately annual shows multi-annual variability in agreement with RAPID observations, and that the downturn between 2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline as indicated by other proxies and high resolution climate models. Our results reinforce that adequately capturing changes to the deep circulation is key to detecting any anthropogenic climate change-related AMOC decline.


2020 ◽  
Vol 33 (8) ◽  
pp. 3125-3149 ◽  
Author(s):  
Shantong Sun ◽  
Ian Eisenman ◽  
Laure Zanna ◽  
Andrew L. Stewart

AbstractPaleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-only simulations with surface forcing fields specified from the simulation results of three coupled climate models that span much of the range of glacial AMOC depth changes in phase 3 of the Paleoclimate Model Intercomparison Project (PMIP3). We find that the MITgcm simulations successfully reproduce the changes in AMOC depth between glacial and modern conditions simulated in these three PMIP3 models. By varying the restoring time scale in the surface forcing, we show that the AMOC depth is more strongly constrained by the surface density field than the surface buoyancy flux field. Based on these results, we propose a mechanism by which the surface density fields in the high latitudes of both hemispheres are connected to the AMOC depth. We illustrate the mechanism using MITgcm simulations with idealized surface forcing perturbations as well as an idealized conceptual geometric model. These results suggest that the AMOC depth is largely determined by the surface density fields in both the North Atlantic and the Southern Ocean.


2021 ◽  
Author(s):  
Emma Worthington ◽  
Ben Moat ◽  
David Smeed ◽  
Jennifer Mecking ◽  
Robert Marsh ◽  
...  

<p>A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012 by the RAPID array with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic re-search suggests that the AMOC may have been declining for decades or even centuries before this, however direct observations are sparse prior to 2004, giving only ‘snapshots’ of the overturning circulation. Previous studies have used linear models based on upper layer temperature anomalies to extend AMOC estimates back in time, however these ignore changes in the deep circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher fidelity empirical model of AMOC variability based on RAPID data, and associated physically with changes in thickness of the persistent upper, intermediate and deep water masses at 26°N and associated transports. We applied historical hydrographic data to the empirical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC toapproximately annual shows multi-annual variability in agreement with RAPID observations, and that the downturn between 2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline asindicated by other proxies and high resolution climate models. Our results reinforce that adequately capturing changes to thedeep circulation is key to detecting any anthropogenic climate change-related AMOC decline</p>


Sign in / Sign up

Export Citation Format

Share Document