scholarly journals ENSO Amplitude Modulation Associated with the Mean SST Changes in the Tropical Central Pacific Induced by Atlantic Multidecadal Oscillation

2014 ◽  
Vol 27 (20) ◽  
pp. 7911-7920 ◽  
Author(s):  
In-Sik Kang ◽  
Hyun-ho No ◽  
Fred Kucharski

Abstract The mechanism associated with the modulation of the El Niño–Southern Oscillation (ENSO) amplitude caused by the Atlantic multidecadal oscillation (AMO) is investigated by using long-term historical observational data and various types of models. The observational data for the period 1900–2013 show that the ENSO variability weakened during the positive phase of the AMO and strengthened in the negative phase. Such a relationship between the AMO and ENSO amplitude has been reported by a number of previous studies. In the present study the authors demonstrate that the weakening of the ENSO amplitude during the positive phase of the AMO is related to changes of the SST cooling in the eastern and central Pacific accompanied by the easterly wind stress anomalies in the equatorial central Pacific, which were reproduced reasonably well by coupled general circulation model (CGCM) simulations performed with the Atlantic Ocean SST nudged perpetually with the observed SST representing the positive phase of the AMO and the free integration in the other ocean basins. Using a hybrid coupled model, it was determined that the mechanism associated with the weakening of the ENSO amplitude is related to the westward shift and weakening of the ENSO zonal wind stress anomalies accompanied by the westward shift of precipitation anomalies associated with the relatively cold background mean SST over the central Pacific.

2012 ◽  
Vol 25 (20) ◽  
pp. 7083-7099 ◽  
Author(s):  
S. C. Hardiman ◽  
N. Butchart ◽  
T. J. Hinton ◽  
S. M. Osprey ◽  
L. J. Gray

Abstract The importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960–2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño–Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales.


2020 ◽  
Vol 33 (11) ◽  
pp. 4679-4695 ◽  
Author(s):  
Xin Geng ◽  
Wenjun Zhang ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker ◽  
Aaron F. Z. Levine

AbstractRecent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia.


2015 ◽  
Vol 143 (11) ◽  
pp. 4597-4617 ◽  
Author(s):  
Yukiko Imada ◽  
Hiroaki Tatebe ◽  
Masayoshi Ishii ◽  
Yoshimitsu Chikamoto ◽  
Masato Mori ◽  
...  

Abstract Predictability of El Niño–Southern Oscillation (ENSO) is examined using ensemble hindcasts made with a seasonal prediction system based on the atmosphere and ocean general circulation model, the Model for Interdisciplinary Research on Climate, version 5 (MIROC5). Particular attention is paid to differences in predictive skill in terms of the prediction error for two prominent types of El Niño: the conventional eastern Pacific (EP) El Niño and the central Pacific (CP) El Niño, the latter having a maximum warming around the date line. Although the system adopts ocean anomaly assimilation for the initialization process, it maintains a significant ability to predict ENSO with a lead time of more than half a year. This is partly due to the fact that the system is little affected by the “spring prediction barrier,” because increases in the error have little dependence on the thermocline variability. Composite analyses of each type of El Niño reveal that, compared to EP El Niños, the ability to predict CP El Niños is limited and has a shorter lead time. This is because CP El Niños have relatively small amplitudes, and thus they are more affected by atmospheric noise; this prevents development of oceanic signals that can be used for prediction.


2006 ◽  
Vol 19 (16) ◽  
pp. 3952-3972 ◽  
Author(s):  
J. H. Jungclaus ◽  
N. Keenlyside ◽  
M. Botzet ◽  
H. Haak ◽  
J.-J. Luo ◽  
...  

Abstract This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations. A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated equatorial upwelling weaken, and there is a reduction of the model’s equatorial cold SST bias by more than 1 K. Equatorial SST variability also becomes more realistic. The strength of the variability is reduced by about 30% in the eastern equatorial Pacific and the extension of SST variability into the warm pool is significantly reduced. The dominant El Niño–Southern Oscillation (ENSO) period shifts from 3 to 4 yr. Without the parameterization an unrealistically strong westward propagation of SST anomalies is simulated. The reasons for the changes in variability are linked to changes in both the mean state and to a reduction in atmospheric sensitivity to SST changes and oceanic sensitivity to wind anomalies.


An atmospheric general circulation model (GCM) was forced with the observed near-global sea surface temperature (SST) pattern for the period January 1970-December 1985. Its response over the Pacific Ocean is compared with Tahiti and Darwin station sea-level pressure and wind stress analyses obtained from Florida State University. The time-dependent SST clearly induces in the model run a Southern Oscillation that is apparent in the time series of all considered variables. The phase of the GCM Southern Oscillation is as observed but its low-frequency variance is too low and the spatial pattern is confined mainly to the western Pacific. The model is successful in reproducing the warm events of 1972—73 and 1982—83 and the cold event 1970—71, but fails with the cold events 1973-74 and 1975-76 and with the warm event 1976-77. Because the GCM is used as the atmospheric component in a coupled model, the response of an equatorial oceanic primitive equation model to both the modelled and observed wind stress is examined. The ocean model responds in essentially the same way to forcing with the observed wind stress and to forcing that corresponds to the first two low-frequency empirical orthogonal functions (EOFS) of the wind variations. These first two EOFS describe a regular eastward propagation of the so signal from the western Pacific to the central Pacific within about one year. The ocean model’s response to the modelled wind stress is too weak. It is similar to the response to the first observed wind stress EOF only. That is, the observed Southern Oscillation appears as a sequence of propagating patterns but the simulated Southern Oscillation appears as one standing pattern. The nature of the deviation of simulated wind stress from observations is further analysed by means of model output statistics.


2013 ◽  
Vol 26 (23) ◽  
pp. 9696-9712 ◽  
Author(s):  
Helene Muri ◽  
André Berger ◽  
Qiuzhen Yin ◽  
Mehdi Pasha Karami ◽  
Pierre-Yves Barriat

The climate of the Marine Isotopic Stage 13 (MIS-13) is explored in the fully coupled atmosphere–ocean general circulation model the Hadley Centre Coupled Model, version 3 (HadCM3). It is found that the strong insolation forcing at the time imposed a strengthened land–ocean thermal contrast, resulting in an intensified summer monsoon over Asia. The addition of land ice over North America and Eurasia results in a stationary wave feature across the Eurasian continent. This leads to a high pressure anomaly over the Sea of Japan with increased advection of warm moist air onto the Chinese landmasses. This in turn reinforces the East Asian summer monsoon (EASM), highlighting the counterintuitive notion that, depending on the background insolation and its size, ice can indeed contribute to strengthening the EASM. The modeling results support the geological record indication of a strong EASM 500 000 years ago. Furthermore, Arctic Oscillation, El Niño–Southern Oscillation, and Indian Ocean dipole–like teleconnection features are discussed in the MIS-13 environment. It is shown that the change in the tropical Pacific sea surface temperature has the potential to impact the North Atlantic climate through an atmospheric “bridge.”


2009 ◽  
Vol 22 (21) ◽  
pp. 5686-5697 ◽  
Author(s):  
Paulo Nobre ◽  
Marta Malagutti ◽  
Domingos F. Urbano ◽  
Roberto A. F. de Almeida ◽  
Emanuel Giarolla

Abstract The effects of Amazon deforestation on climate change are investigated using twin numerical experiments of an atmospheric general circulation model (AGCM) with prescribed global sea surface temperature and the same AGCM coupled to an ocean GCM (CGCM) over the global tropics. An ensemble approach is adopted, with 10-member ensemble averages of a control simulation compared with perturbed simulations for three scenarios of Amazon deforestation. The latest 20 yr of simulation from each experiment are analyzed. Local surface warming and rainfall reduction are simulated by both models over the Amazon basin. The coupled model presented a rainfall reduction that is nearly 60% larger compared to its control run than those obtained by the AGCM. The results also indicated that both the fraction of the deforested area and the spatial continuity of the vegetated area might be important for modulating global climate variability and change. Additionally, significant remote atmospheric responses to Amazon deforestation scenarios are detected for the coupled simulations, which revealed global ocean and atmosphere circulation changes conducive to enhanced ocean–atmosphere variability over the Pacific Ocean. This, in turn, is interpreted as a manifestation of enhanced El Niño–Southern Oscillation (ENSO) activity over the Pacific and a positive feedback contributing to the extra rainfall reduction over the Amazon on the coupled simulations.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2008 ◽  
Vol 21 (18) ◽  
pp. 4647-4663 ◽  
Author(s):  
Benjamin A. Cash ◽  
Xavier Rodó ◽  
James L. Kinter

Abstract Recent studies arising from both statistical analysis and dynamical disease models indicate that there is a link between incidence of cholera, a paradigmatic waterborne bacterial disease (WBD) endemic to Bangladesh, and the El Niño–Southern Oscillation (ENSO). However, a physical mechanism explaining this relationship has not yet been established. A regionally coupled, or “pacemaker,” configuration of the Center for Ocean–Land–Atmosphere Studies atmospheric general circulation model is used to investigate links between sea surface temperature in the central and eastern tropical Pacific and the regional climate of Bangladesh. It is found that enhanced precipitation tends to follow winter El Niño events in both the model and observations, providing a plausible physical mechanism by which ENSO could influence cholera in Bangladesh. The enhanced precipitation in the model arises from a modification of the summer monsoon circulation over India and Bangladesh. Westerly wind anomalies over land to the west of Bangladesh lead to increased convergence in the zonal wind field and hence increased moisture convergence and rainfall. This change in circulation results from the tropics-wide warming in the model following a winter El Niño event. These results suggest that improved forecasting of cholera incidence may be possible through the use of climate predictions.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


Sign in / Sign up

Export Citation Format

Share Document