scholarly journals The Effect of a Well-Resolved Stratosphere on Surface Climate: Differences between CMIP5 Simulations with High and Low Top Versions of the Met Office Climate Model

2012 ◽  
Vol 25 (20) ◽  
pp. 7083-7099 ◽  
Author(s):  
S. C. Hardiman ◽  
N. Butchart ◽  
T. J. Hinton ◽  
S. M. Osprey ◽  
L. J. Gray

Abstract The importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960–2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño–Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales.

2019 ◽  
Vol 76 (5) ◽  
pp. 1203-1226 ◽  
Author(s):  
Yoshio Kawatani ◽  
Kevin Hamilton ◽  
Lesley J. Gray ◽  
Scott M. Osprey ◽  
Shingo Watanabe ◽  
...  

Abstract The impact of stratospheric representation is investigated using the Model for Interdisciplinary Research on Climate Atmospheric General Circulation Model (MIROC-AGCM) run with different model-lid heights and stratospheric vertical resolutions, but unchanged horizontal resolutions (~1.125°) and subgrid parameterizations. One-hundred-year integrations of the model were conducted using configurations with 34, 42, 72, and 168 vertical layers and model-lid heights of ~27 km (L34), 47 km (L42), 47 km (L72), and 100 km (L168). Analysis of the results focused on the Northern Hemisphere in winter. Compared with the L42 model, the L34 model produces a poorer simulation of the stratospheric Brewer–Dobson circulation (BDC) in the lower stratosphere, with weaker polar downwelling and accompanying cold-pole and westerly jet biases. The westerly bias extends into the troposphere and even to the surface. The tropospheric westerlies and zone of baroclinic wave activity shift northward; surface pressure has negative (positive) biases in the high (mid-) latitudes, with concomitant precipitation shifts. The L72 and L168 models generate a quasi-biennial oscillation (QBO) while the L34 and 42 models do not. The L168 model includes the mesosphere, and thus resolves the upper branch of the BDC. The L72 model simulates stronger polar downwelling associated with the BDC than does the L42 model. However, experiments with prescribed nudging of the tropical stratospheric winds suggest differences in the QBO representation cannot account for L72 − L42 differences in the climatological polar night jet structure. The results show that the stratospheric vertical resolution and inclusion of the full middle atmosphere significantly affect tropospheric circulations.


2006 ◽  
Vol 7 (1) ◽  
pp. 114-136 ◽  
Author(s):  
Thomas J. Phillips

Abstract In this study, the sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the “reproducibility” of continental climate for different initial conditions, spatiotemporal correlations are computed across paired realizations of 11 model land surface variables in which the seasonal cycle is either included or excluded—the former case being pertinent to climate simulation and the latter to seasonal prediction. It is found that the land surface variables that include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Niño–Southern Oscillation. However, the overall degree of reproducibility depends on the particular land surface anomaly considered. It is also shown that the predictability of a land surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability metrics. Implications of these results for climate model intercomparison projects and for operational forecasts of seasonal continental climate also are elaborated.


2019 ◽  
Vol 12 (12) ◽  
pp. 4999-5028 ◽  
Author(s):  
Malcolm J. Roberts ◽  
Alex Baker ◽  
Ed W. Blockley ◽  
Daley Calvert ◽  
Andrew Coward ◽  
...  

Abstract. The Coupled Model Intercomparison Project phase 6 (CMIP6) HighResMIP is a new experimental design for global climate model simulations that aims to assess the impact of model horizontal resolution on climate simulation fidelity. We describe a hierarchy of global coupled model resolutions based on the Hadley Centre Global Environment Model 3 – Global Coupled vn 3.1 (HadGEM3-GC3.1) model that ranges from an atmosphere–ocean resolution of 130 km–1∘ to 25 km–1∕12∘, all using the same forcings and initial conditions. In order to make such high-resolution simulations possible, the experiments have a short 30-year spinup, followed by at least century-long simulations with constant forcing to assess drift. We assess the change in model biases as a function of both atmosphere and ocean resolution, together with the effectiveness and robustness of this new experimental design. We find reductions in the biases in top-of-atmosphere radiation components and cloud forcing. There are significant reductions in some common surface climate model biases as resolution is increased, particularly in the Atlantic for sea surface temperature and precipitation, primarily driven by increased ocean resolution. There is also a reduction in drift from the initial conditions both at the surface and in the deeper ocean at higher resolution. Using an eddy-present and eddy-rich ocean resolution enhances the strength of the North Atlantic ocean circulation (boundary currents, overturning circulation and heat transport), while an eddy-present ocean resolution has a considerably reduced Antarctic Circumpolar Current strength. All models have a reasonable representation of El Niño–Southern Oscillation. In general, the biases present after 30 years of simulations do not change character markedly over longer timescales, justifying the experimental design.


2017 ◽  
Vol 24 (4) ◽  
pp. 681-694 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiong Deng ◽  
Shaoqing Zhang ◽  
Zhengyu Liu ◽  
Chang Liu ◽  
...  

Abstract. Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.


2012 ◽  
Vol 12 (12) ◽  
pp. 5367-5390 ◽  
Author(s):  
J. Kelly ◽  
P. A. Makar ◽  
D. A. Plummer

Abstract. Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6) scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here. The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6 emissions for 2050 resulted in an improved air-quality, with decreases in key pollutant concentrations, in acute human mortality associated with air-pollution, and in sulphur and ozone deposition to the ecosystem. The positive outcomes of the RCP 6 emissions reductions were found to be of greater magnitude than the negative outcomes of climate change alone. The RCP 6 scenario however resulted in an increase in the deposition of nitrogen, as a result of increased ammonia emissions expected in that scenario, compared to current ammonia emissions levels. The results of the study raise the possibility that simultaneous reductions of greenhouse gases and air pollution precursors may further reduce air pollution levels, with the added benefits of an immediate reduction in the impacts of air pollution on human and ecosystem health. Further scenarios to investigate this possibility are therefore recommended.


2010 ◽  
Vol 23 (23) ◽  
pp. 6312-6335 ◽  
Author(s):  
Masahiro Watanabe ◽  
Tatsuo Suzuki ◽  
Ryouta O’ishi ◽  
Yoshiki Komuro ◽  
Shingo Watanabe ◽  
...  

Abstract A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5. A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Niño–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between the two MIROC3.2 versions, indicating a greater effect of updating parameterization schemes on the model climate than increasing the model resolution. The mean cloud property obtained from the sophisticated prognostic schemes in MIROC5 shows good agreement with satellite measurements. MIROC5 reveals an equilibrium climate sensitivity of 2.6 K, which is lower than that in MIROC3.2 by 1 K. This is probably due to the negative feedback of low clouds to the increasing concentration of CO2, which is opposite to that in MIROC3.2.


2016 ◽  
Vol 73 (9) ◽  
pp. 3397-3421 ◽  
Author(s):  
Weiye Yao ◽  
Christiane Jablonowski

Abstract The paper demonstrates that sudden stratospheric warmings (SSWs) can be simulated in an ensemble of dry dynamical cores that miss the typical SSW forcing mechanisms like moist processes, land–sea contrasts, or topography. These idealized general circulation model (GCM) simulations are driven by a simple Held–Suarez–Williamson (HSW) temperature relaxation and low-level Rayleigh friction. In particular, the four dynamical cores of NCAR’s Community Atmosphere Model, version 5 (CAM5), are used, which are the semi-Lagrangian (SLD) and Eulerian (EUL) spectral-transform models and the finite-volume (FV) and the spectral element (SE) models. Three research themes are discussed. First, it is shown that SSW events in such idealized simulations have very realistic flow characteristics that are analyzed via the SLD model. A single vortex-split event is highlighted that is driven by wavenumber-1 and -2 wave–mean flow interactions. Second, the SLD simulations are compared to the EUL, FV, and SE dynamical cores, which sheds light on the impact of the numerical schemes on the circulation. Only SLD produces major SSWs, while others only exhibit minor stratospheric warmings. These differences are caused by SLD’s more vigorous wave–mean flow interactions in addition to a warm pole bias, which leads to relatively weak polar jets in SLD. Third, it is shown that tropical quasi-biennial oscillation (QBO)–like oscillations and SSWs can coexist in such idealized HSW simulations. They are present in the SLD dynamical core that is used to analyze the QBO–SSW interactions via a transformed Eulerian-mean (TEM) analysis. The TEM results provide support for the Holton–Tan effect.


2009 ◽  
Vol 9 (1) ◽  
pp. 1977-2020
Author(s):  
F. Khosrawi ◽  
R. Müller ◽  
M. H. Proffitt ◽  
R. Ruhnke ◽  
O. Kirner ◽  
...  

Abstract. 1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived from satellite measurements were used as a tool for the evaluation of atmospheric photochemical models. Two 1-year data sets, one derived from the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) and one from the Odin Sub-Millimetre Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evaluation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chemistry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the entire hemisphere, the evaluation is performed for the entire hemisphere as well as for the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set as reference. To assess the impact of using different data sets for such an evaluation study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as a reference, thus, showing that the results are not influenced by the particular satellite data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows that all models are in good agreement with Odin/SMR and ILAS/ILAS-II. Differences are generally in the range of ±20%. Larger differences (up to −40%) are found in all models at 500±25 K for N2O mixing ratios greater than 200 ppb. Generally, the largest differences were found for the tropics and the lowest for the polar regions. However, an underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both in the Northern and Southern Hemisphere.


2020 ◽  
Author(s):  
Ulrike Niemeier ◽  
Jadwiga H. Richter ◽  
Simone Tilmes

Abstract. Artificial injections of sulfur dioxide (SO2) into the stratosphere show in several model studies an impact on stratospheric dynamics. The quasi-biennial oscillation (QBO) has been shown to slow down or even vanish, under higher SO2 injections in the equatorial region. But the impact is only qualitatively, but not quantitatively consistent across the different studies using different numerical models. The aim of this study is to understand the reasons behind the differences in the QBO response to SO2 injections between two general circulation models, the Whole Atmosphere Community Climate Model (WACCM-110L) and MAECHAM5-HAM. We show that the response of the QBO to injections with the same SO2 injection rate is very different in the two models, but similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason for the different response of the QBO corresponding to the same injection rate is very different vertical advection in the two models, even in the control simulation. The stronger vertical advection in WACCM results in a higher aerosol burden and stronger heating of the aerosols, and, consequently in a vanishing QBO at lower injection rate than in simulations with MAECHAM5-HAM.


2012 ◽  
Vol 5 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared. In addition, patterns of predicted mid-Pliocene biomes resulting from the three climate simulations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are small over the land, but evident over the ocean particularly in the North Atlantic and polar regions.


Sign in / Sign up

Export Citation Format

Share Document