scholarly journals The Relationship between the Pacific–North American Teleconnection Pattern, the Great Plains Low-Level Jet, and North Central U.S. Heavy Rainfall Events*

2015 ◽  
Vol 28 (17) ◽  
pp. 6729-6742 ◽  
Author(s):  
Keith J. Harding ◽  
Peter K. Snyder

Abstract This study demonstrates the relationship between the Pacific–North American (PNA) teleconnection pattern and the Great Plains low-level jet (GPLLJ). The negative phase of the PNA, which is associated with lower heights over the Great Plains and ridging in the southeastern United States, enhances the GPLLJ by increasing the pressure gradient within the GPLLJ on 6-hourly to monthly time scales. Strong GPLLJ events predominantly occur when the PNA is negative. Warm-season strong GPLLJ events with a very negative PNA (<−1) are associated with more persistent, longer wavelength planetary waves that increase the duration of GPLLJ events and enhance precipitation over the north central United States. When one considers the greatest 5-day north central U.S. precipitation events, a large majority occur when the PNA is negative, with most exhibiting a very negative PNA. Stronger moisture transport during heavy rainfall events with a very negative PNA decreases the precipitation of locally derived moisture compared to events with a very positive PNA. The PNA becomes negative 2–12 days before heavy rainfall events and is very negative within two weeks of 78% of heavy rainfall events in the north central United States, a finding that could be used to improve medium-range forecasts of heavy rainfall events.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jordan L. Rabinowitz ◽  
Anthony R. Lupo ◽  
Patrick E. Guinan

Over the last six to seven decades, there has been a substantial increase in atmospheric research to better understand the dynamics and evolution of atmospheric blocking events. It is well known that atmospheric blocking serves as a catalyst for increasing the frequency of atmospheric flow regime stagnation and forecast unpredictability. This study built upon the results of previous work by expanding upon the findings of various climatologies and case studies. This work analyzes specific trends observed in association with atmospheric blocking predominantly across the central and eastern Pacific Ocean. Such trends include the relationship between the size, duration, and onset position of atmospheric blocking events and the frequency, duration, and intensity of heavy rainfall events across the central United States. A strong focus is placed on examining the duration and spatial extent of atmospheric blocking which has been found to influence the intensity of heavy rainfall events. The goal is to further bridge the gap between the location and duration of blocking highs and the intensity, duration, and frequency of heavy rainfall events which occur downstream of such blocking events.


1988 ◽  
Vol 66 (8) ◽  
pp. 1570-1573 ◽  
Author(s):  
George H. Riechers ◽  
Boyd R. Strain

Blue grama (Bouteloua gracilis (HBK.) Griffiths), an important C4 species in the Great Plains grasslands of the north-central United States, was grown under three concentrations of CO2: 350, 675, and 1000 μL∙L−1. Growth of blue grama was significantly enhanced by enrichment to 675 but not to 1000 μL∙L−1. At the end of the experiment, 7 weeks after planting, plants grown at 675 μL∙L−1 had 35% more total biomass and nearly 90% greater leaf area than controls grown at 350 μL∙L−1. This growth enhancement is large for a C4 species, but is modest compared with the response typical of C3 species. It is concluded that blue grama may experience increasing competition from its C3, associates if atmospheric CO2 continues to increase in the future.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0139188 ◽  
Author(s):  
Laura Aldrich-Wolfe ◽  
Steven Travers ◽  
Berlin D. Nelson

1995 ◽  
Vol 52 (2) ◽  
pp. 416-424 ◽  
Author(s):  
James W. LaBaugh

Algal chlorophyll a is commonly used as a surrogate for algal biomass. Data from three lakes in western Nebraska, five wetlands in north-central North Dakota, and two lakes in north-central Minnesota represented a range in algal biovolume of over four orders of magnitude and a range in chlorophyll a from less than 1 to 380 mg∙m−3. Analysis of these data revealed that there was a linear relation, log10 algal biovolume = 5.99 + 0.09 chlorophyll a (r2 = 0.72), for cases in which median values of chlorophyll a for open-water periods were less than 20 mg∙m−3. There was no linear relation in cases in which median chlorophyll a concentrations were larger than 20 mg∙m−3 for open-water periods, an occurrence found only in shallow prairies lakes and wetlands for years in which light penetration was the least.


2015 ◽  
Vol 107 (4) ◽  
pp. 1401-1410 ◽  
Author(s):  
Yi Wang ◽  
Matthew D. Ruark ◽  
Amanda J. Gevens ◽  
Don T. Caine ◽  
Amanda L. Raster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document