scholarly journals Decadal Change in Tropical Cyclone Activity over the South China Sea around 2002/03

2015 ◽  
Vol 28 (15) ◽  
pp. 5935-5951 ◽  
Author(s):  
Yao Ha ◽  
Zhong Zhong

Abstract This study investigates the decadal change in tropical cyclone (TC) activity over the South China Sea (SCS) in the boreal summer (June–August) since the early 1990s and explores possible causes behind it. Results show that the SCS TC activity experienced an abrupt decadal decrease at around 2003/03. Compared to the TC activities from the early 1990s to 2002, the number of TCs formed in the SCS markedly decreased from 2003 through the early 2010s. Moreover, most of the TCs were primarily confined within the SCS basin during this period. The TCs that formed during the period of 2003–11 usually moved west-northwestward and rapidly weakened after making landfall. It is found that a significant decadal-scale sea surface temperature (SST) warming occurred in the northern Indian Ocean and the western Pacific Ocean after 2002 while convection intensified over the tropical regions between 60° and 80°E and around 150°E, respectively. The warm SST anomalies induced an anomalous subsiding flow over the SCS basin via the Walker-like (zonal) circulation. Meanwhile, anomalously dry, sinking air around 5°–20°N derived from local Hadley (meridional) circulation reinforced the subsiding flow of the zonal circulation. The above circulation patterns suppressed TC genesis over the northern SCS, leading to the decadal decrease in TC activity that occurred around 2002/03. In addition, in conjunction with the local anomalous easterly flow, the intraseasonal atmospheric variability over the SCS has decreased since the early 2000s. This is unfavorable for the development of synoptic-scale disturbances and may also contribute to the decadal decrease in TC activity.

2021 ◽  
pp. 1-53
Author(s):  
Weixin Xu ◽  
Steven A. Rutledge ◽  
Kyle Chudler

AbstractUsing 17-yr spaceborne precipitation radar measurements, this study investigates how diurnal cycles of rainfall and convective characteristics over the South China Sea region are modulated by the Boreal Summer Intraseasonal Oscillation (BSISO). Generally, diurnal cycles change significantly between suppressed and active BSISO periods. Over the Philippines and Indochina, where the low-level monsoon flows impinge on coast lines, diurnal cycles of rainfall and many convective properties are enhanced during suppressed periods. During active periods, diurnal variation of convection is still significant over land but diminishes over water. Also, afternoon peaks of rainfall and MCS populations over land are obviously extended in active periods, mainly through the enhancement of stratiform precipitation. Over Borneo, where the prevailing low-level winds are parallel to coasts, diurnal cycles (both onshore and offshore) are actually stronger during active periods. Radar profiles also demonstrate a pronounced nocturnal offshore propagation of deep convection over western Borneo in active periods. During suppressed periods, coastal afternoon convection over Borneo is reduced, and peak convection occurs over the mountains until the convective suppression is overcome in the late afternoon or evening. A major portion (> 70%) of the total precipitation over Philippines and Indochina during suppressed periods falls from afternoon isolated to medium-sized systems (< 10,000 km2), but more than 70% of the active BSISO rainfall is contributed by nocturnal (after 18 LT) broad precipitation systems (> 10,000 km2). However, offshore total precipitation is dominated by large precipitation systems (> 10,000 km2) regardless of BSISO phases and regions.


Sign in / Sign up

Export Citation Format

Share Document